dynare/mex/sources/libslicot/BB03AD.f

491 lines
17 KiB
Fortran

SUBROUTINE BB03AD(DEF, NR, DPAR, IPAR, VEC, N, M, E, LDE, A, LDA,
1 Y, LDY, B, LDB, X, LDX, U, LDU, NOTE, DWORK,
2 LDWORK, INFO)
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To generate benchmark examples of (generalized) continuous-time
C Lyapunov equations
C
C T T
C A X E + E X A = Y .
C
C In some examples, the right hand side has the form
C
C T
C Y = - B B
C
C and the solution can be represented as a product of Cholesky
C factors
C
C T
C X = U U .
C
C E, A, Y, X, and U are real N-by-N matrices, and B is M-by-N. Note
C that E can be the identity matrix. For some examples, B, X, or U
C are not provided.
C
C This routine is an implementation of the benchmark library
C CTLEX (Version 1.0) described in [1].
C
C ARGUMENTS
C
C Mode Parameters
C
C DEF CHARACTER*1
C Specifies the kind of values used as parameters when
C generating parameter-dependent and scalable examples
C (i.e., examples with NR(1) = 2, 3, or 4):
C DEF = 'D' or 'd': Default values are used.
C DEF = 'N' or 'n': Values set in DPAR and IPAR are used.
C This parameter is not referenced if NR(1) = 1.
C Note that the scaling parameter of examples with
C NR(1) = 3 or 4 is considered as a regular parameter in
C this context.
C
C Input/Output Parameters
C
C NR (input) INTEGER array, dimension 2
C Specifies the index of the desired example according
C to [1].
C NR(1) defines the group:
C 1 : parameter-free problems of fixed size
C 2 : parameter-dependent problems of fixed size
C 3 : parameter-free problems of scalable size
C 4 : parameter-dependent problems of scalable size
C NR(2) defines the number of the benchmark example
C within a certain group according to [1].
C
C DPAR (input/output) DOUBLE PRECISION array, dimension 2
C On entry, if DEF = 'N' or 'n' and the desired example
C depends on real parameters, then the array DPAR must
C contain the values for these parameters.
C For an explanation of the parameters see [1].
C For Example 4.1, DPAR(1) and DPAR(2) define 'r' and 's',
C respectively.
C For Example 4.2, DPAR(1) and DPAR(2) define 'lambda' and
C 's', respectively.
C For Examples 4.3 and 4.4, DPAR(1) defines the parameter
C 't'.
C On exit, if DEF = 'D' or 'd' and the desired example
C depends on real parameters, then the array DPAR is
C overwritten by the default values given in [1].
C
C IPAR (input/output) INTEGER array of DIMENSION at least 1
C On entry, if DEF = 'N' or 'n' and the desired example
C depends on integer parameters, then the array IPAR must
C contain the values for these parameters.
C For an explanation of the parameters see [1].
C For Examples 4.1, 4.2, and 4.3, IPAR(1) defines 'n'.
C For Example 4.4, IPAR(1) defines 'q'.
C On exit, if DEF = 'D' or 'd' and the desired example
C depends on integer parameters, then the array IPAR is
C overwritten by the default values given in [1].
C
C VEC (output) LOGICAL array, dimension 8
C Flag vector which displays the availability of the output
C data:
C VEC(1) and VEC(2) refer to N and M, respectively, and are
C always .TRUE.
C VEC(3) is .TRUE. iff E is NOT the identity matrix.
C VEC(4) and VEC(5) refer to A and Y, respectively, and are
C always .TRUE.
C VEC(6) is .TRUE. iff B is provided.
C VEC(7) is .TRUE. iff the solution matrix X is provided.
C VEC(8) is .TRUE. iff the Cholesky factor U is provided.
C
C N (output) INTEGER
C The actual state dimension, i.e., the order of the
C matrices E and A.
C
C M (output) INTEGER
C The number of rows in the matrix B. If B is not provided
C for the desired example, M = 0 is returned.
C
C E (output) DOUBLE PRECISION array, dimension (LDE,N)
C The leading N-by-N part of this array contains the
C matrix E.
C NOTE that this array is overwritten (by the identity
C matrix), if VEC(3) = .FALSE.
C
C LDE INTEGER
C The leading dimension of array E. LDE >= N.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array contains the
C matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= N.
C
C Y (output) DOUBLE PRECISION array, dimension (LDY,N)
C The leading N-by-N part of this array contains the
C matrix Y.
C
C LDY INTEGER
C The leading dimension of array Y. LDY >= N.
C
C B (output) DOUBLE PRECISION array, dimension (LDB,N)
C The leading M-by-N part of this array contains the
C matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= M.
C
C X (output) DOUBLE PRECISION array, dimension (LDX,N)
C The leading N-by-N part of this array contains the
C matrix X.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= N.
C
C U (output) DOUBLE PRECISION array, dimension (LDU,N)
C The leading N-by-N part of this array contains the
C matrix U.
C
C LDU INTEGER
C The leading dimension of array U. LDU >= N.
C
C NOTE (output) CHARACTER*70
C String containing short information about the chosen
C example.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK.
C For Examples 4.1 and 4.2., LDWORK >= 2*IPAR(1) is
C required.
C For the other examples, no workspace is needed, i.e.,
C LDWORK >= 1.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value; in particular, INFO = -3 or -4 indicates
C that at least one of the parameters in DPAR or
C IPAR, respectively, has an illegal value.
C
C REFERENCES
C
C [1] D. Kressner, V. Mehrmann, and T. Penzl.
C CTLEX - a Collection of Benchmark Examples for Continuous-
C Time Lyapunov Equations.
C SLICOT Working Note 1999-6, 1999.
C
C NUMERICAL ASPECTS
C
C None
C
C CONTRIBUTOR
C
C D. Kressner, V. Mehrmann, and T. Penzl (TU Chemnitz)
C
C For questions concerning the collection or for the submission of
C test examples, please contact Volker Mehrmann
C (Email: volker.mehrmann@mathematik.tu-chemnitz.de).
C
C REVISIONS
C
C June 1999, V. Sima.
C
C KEYWORDS
C
C continuous-time Lyapunov equations
C
C ********************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR
PARAMETER (ZERO = .0D0, ONE = .1D1, TWO = .2D1,
1 THREE = .3D1, FOUR = .4D1)
C .. Scalar Arguments ..
CHARACTER DEF
CHARACTER*70 NOTE
INTEGER INFO, LDA, LDB, LDE, LDU, LDWORK, LDX, LDY, M, N
C .. Array Arguments ..
LOGICAL VEC(8)
INTEGER IPAR(*), NR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), DPAR(*), DWORK(LDWORK),
1 E(LDE,*), U(LDU,*), X(LDX,*), Y(LDY,*)
C .. Local Scalars ..
INTEGER I, J, K
DOUBLE PRECISION TEMP, TTM1, TTP1, TWOBYN
C .. Local Arrays ..
LOGICAL VECDEF(8)
C .. External Functions ..
C . BLAS .
DOUBLE PRECISION DDOT
EXTERNAL DDOT
C . LAPACK .
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
C . BLAS .
EXTERNAL DGEMV, DGER, DAXPY
C . LAPACK .
EXTERNAL DLASET
C .. Intrinsic Functions ..
INTRINSIC DBLE, MIN, MOD
C .. Data Statements ..
C . default values for availabilities .
DATA VECDEF /.TRUE., .TRUE., .FALSE., .TRUE.,
1 .TRUE., .FALSE., .FALSE., .FALSE./
C
C .. Executable Statements ..
C
INFO = 0
DO 10 I = 1, 8
VEC(I) = VECDEF(I)
10 CONTINUE
C
IF (NR(1) .EQ. 4) THEN
IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
INFO = -1
RETURN
END IF
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'CTLEX: Example 4.1'
IF (LSAME(DEF,'D')) THEN
IPAR(1) = 10
DPAR(1) = .15D1
DPAR(2) = .15D1
END IF
IF ((DPAR(1) .LE. ONE) .OR. (DPAR(2) .LE. ONE)) INFO = -3
IF (IPAR(1) .LT. 2) INFO = -4
N = IPAR(1)
M = 1
IF (LDE .LT. N) INFO = -9
IF (LDA .LT. N) INFO = -11
IF (LDY .LT. N) INFO = -13
IF (LDB .LT. M) INFO = -15
IF (LDX .LT. N) INFO = -17
IF (LDWORK .LT. N*2) INFO = -22
IF (INFO .NE. 0) RETURN
C
VEC(6) = .TRUE.
VEC(7) = .TRUE.
TWOBYN = TWO / DBLE( N )
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
CALL DLASET('A', N, N, ZERO, ZERO, Y, LDY)
CALL DLASET('A', M, N, ZERO, ZERO, B, LDB)
CALL DLASET('A', N, N, ZERO, ZERO, X, LDX)
DO 30 J = 1, N
TEMP = DPAR(1) ** (J-1)
A(J,J) = -TEMP
DWORK(J) = ONE
DO 20 I = 1, N
X(I,J) = DBLE( I*J ) / (TEMP + DPAR(1)**(I-1))
20 CONTINUE
30 CONTINUE
C H1 * A
CALL DGEMV('T', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, A, LDA)
C A * H1
CALL DGEMV('N', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, A, LDA)
C H1 * X
CALL DGEMV('T', N,N, ONE, X, LDX, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, X, LDX)
C X * H1
CALL DGEMV('N', N,N, ONE, X, LDX, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, X, LDX)
C S A INV(S), INV(S) X INV(S), B INV(S)
DO 50 J = 1, N
B(1,J) = DBLE( J-N-1 ) / (DPAR(2)**(J-1))
DO 40 I = 1, N
X(I,J) = X(I,J) / (DPAR(2)**(I+J-2))
A(I,J) = A(I,J) * (DPAR(2)**(I-J))
40 CONTINUE
DWORK(J) = ONE - TWO * MOD(J,2)
50 CONTINUE
C H2 * A
CALL DGEMV('T', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, A, LDA)
C A * H2
CALL DGEMV('N', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, A, LDA)
C H2 * X
CALL DGEMV('T', N,N, ONE, X, LDX, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, X, LDX)
C X * H2
CALL DGEMV('N', N,N, ONE, X, LDX, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, X, LDX)
C B * H2
CALL DAXPY(N, -TWOBYN * DDOT(N, B, LDB, DWORK, 1), DWORK, 1,
1 B, LDB)
C Y = -B' * B
CALL DGER(N ,N, -ONE, B, LDB, B, LDB, Y, LDY)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'CTLEX: Example 4.2'
IF (LSAME(DEF,'D')) THEN
IPAR(1) = 10
DPAR(1) = -.5D0
DPAR(2) = .15D1
END IF
IF ((DPAR(1) .GE. ZERO) .OR. (DPAR(2) .LE. ONE)) INFO = -3
IF (IPAR(1) .LT. 2) INFO = -4
N = IPAR(1)
M = 1
IF (LDE .LT. N) INFO = -9
IF (LDA .LT. N) INFO = -11
IF (LDY .LT. N) INFO = -13
IF (LDB .LT. M) INFO = -15
IF (LDWORK .LT. N*2) INFO = -22
IF (INFO .NE. 0) RETURN
C
VEC(6) = .TRUE.
TWOBYN = TWO / DBLE( N )
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, DPAR(1), A, LDA)
CALL DLASET('A', N, N, ZERO, ZERO, Y, LDY)
CALL DLASET('A', M, N, -TWOBYN, ONE - TWOBYN, B, LDB)
DO 60 I = 1, N-1
DWORK(I) = ONE
A(I,I+1) = ONE
60 CONTINUE
DWORK(N) = ONE
C H1 * A
CALL DGEMV('T', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, A, LDA)
C A * H1
CALL DGEMV('N', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, A, LDA)
C S A INV(S), B INV(S)
DO 80 J = 1, N
B(1,J) = B(1,J) / (DPAR(2)**(J-1))
DO 70 I = 1, N
A(I,J) = A(I,J) * (DPAR(2)**(I-J))
70 CONTINUE
DWORK(J) = ONE - TWO * MOD(J,2)
80 CONTINUE
C H2 * A
CALL DGEMV('T', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK, 1, DWORK(N+1), 1, A, LDA)
C A * H2
CALL DGEMV('N', N,N, ONE, A, LDA, DWORK,1, ZERO, DWORK(N+1),1)
CALL DGER(N, N, -TWOBYN, DWORK(N+1), 1, DWORK, 1, A, LDA)
C B * H2
CALL DAXPY(N, -TWOBYN * DDOT(N, B, LDB, DWORK, 1), DWORK, 1,
1 B, LDB)
C Y = -B' * B
CALL DGER(N ,N, -ONE, B, LDB, B, LDB, Y, LDY)
C
ELSE IF (NR(2) .EQ. 3) THEN
NOTE = 'CTLEX: Example 4.3'
IF (LSAME(DEF,'D')) THEN
IPAR(1) = 10
DPAR(1) = .1D2
END IF
IF (DPAR(1) .LT. ZERO) INFO = -3
IF (IPAR(1) .LT. 2) INFO = -4
N = IPAR(1)
M = 0
IF (LDE .LT. N) INFO = -9
IF (LDA .LT. N) INFO = -11
IF (LDY .LT. N) INFO = -13
IF (LDX .LT. N) INFO = -17
IF (INFO .NE. 0) RETURN
C
VEC(3) = .TRUE.
VEC(7) = .TRUE.
TEMP = TWO ** (-DPAR(1))
CALL DLASET('U', N, N, ZERO, ZERO, E, LDE)
CALL DLASET('L', N, N, TEMP, ONE, E, LDE)
CALL DLASET('L', N, N, ZERO, ZERO, A, LDA)
CALL DLASET('U', N, N, ONE, ZERO, A, LDA)
CALL DLASET('A', N, N, ONE, ONE, X, LDX)
DO 90 I = 1, N
A(I,I) = DBLE( I - 1 ) + TEMP
90 CONTINUE
Y(1,1) = TWO * TEMP + TWO * DBLE( N-1 ) * TEMP**2
TTP1 = TWO * DBLE( N+1 ) * TEMP + TWO - TEMP**2
TTM1 = TWO * DBLE( N-1 ) * TEMP + TWO - TEMP**2
DO 100 I = 2, N
Y(I,1) = Y(1,1) + DBLE( I-1 ) * TTM1
100 CONTINUE
DO 120 J = 2, N
DO 110 I = 1, N
Y(I,J) = Y(I,1) + DBLE( J-1 ) * (TTP1 - FOUR * I * TEMP)
110 CONTINUE
120 CONTINUE
C
ELSE IF (NR(2) .EQ. 4) THEN
NOTE = 'CTLEX: Example 4.4'
IF (LSAME(DEF,'D')) THEN
IPAR(1) = 10
DPAR(1) = .15D1
END IF
IF (DPAR(1) .LT. ONE) INFO = -3
IF (IPAR(1) .LT. 1) INFO = -4
N = IPAR(1) * 3
M = 1
IF (LDE .LT. N) INFO = -9
IF (LDA .LT. N) INFO = -11
IF (LDY .LT. N) INFO = -13
IF (LDB .LT. M) INFO = -15
IF (INFO .NE. 0) RETURN
C
VEC(3) = .TRUE.
VEC(6) = .TRUE.
CALL DLASET('A', N, N, ZERO, ZERO, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
DO 150 I = 1, IPAR(1)
TEMP = -DPAR(1)**I
DO 140 J = 1, I - 1
DO 130 K = 0, 2
A(N - I*3+3, J*3-K) = TEMP
A(N - I*3+2, J*3-K) = TWO * TEMP
130 CONTINUE
140 CONTINUE
A(N - I*3+3, I*3-2) = TEMP
A(N - I*3+2, I*3-2) = TWO * TEMP
A(N - I*3+2, I*3-1) = TWO * TEMP
A(N - I*3+2, I*3 ) = TEMP
A(N - I*3+1, I*3 ) = TEMP
150 CONTINUE
DO 170 J = 1, N
IF (J .GT. 1) CALL DAXPY(N, ONE, A(J-1,1), LDA, A(J,1), LDA)
B(1, J) = DBLE( J )
DO 160 I = 1, N
E(I,N-J+1) = DBLE( MIN( I, J ) )
Y(I,J) = -DBLE( I*J )
160 CONTINUE
170 CONTINUE
C
ELSE
INFO = -2
END IF
ELSE
INFO = -2
END IF
C
RETURN
C *** Last Line of BB03AD ***
END