dynare/mex/sources/libslicot/AB13BD.f

391 lines
14 KiB
Fortran

DOUBLE PRECISION FUNCTION AB13BD( DICO, JOBN, N, M, P, A, LDA,
$ B, LDB, C, LDC, D, LDD, NQ, TOL,
$ DWORK, LDWORK, IWARN, INFO)
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the H2 or L2 norm of the transfer-function matrix G
C of the system (A,B,C,D). G must not have poles on the imaginary
C axis, for a continuous-time system, or on the unit circle, for
C a discrete-time system. If the H2-norm is computed, the system
C must be stable.
C
C FUNCTION VALUE
C
C AB13BD DOUBLE PRECISION
C The H2-norm of G, if JOBN = 'H', or the L2-norm of G,
C if JOBN = 'L' (if INFO = 0).
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOBN CHARACTER*1
C Specifies the norm to be computed as follows:
C = 'H': the H2-norm;
C = 'L': the L2-norm.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A, the number of rows of the
C matrix B, and the number of columns of the matrix C.
C N represents the dimension of the state vector. N >= 0.
C
C M (input) INTEGER
C The number of columns of the matrices B and D.
C M represents the dimension of input vector. M >= 0.
C
C P (input) INTEGER
C The number of rows of the matrices C and D.
C P represents the dimension of output vector. P >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix of the system.
C On exit, the leading NQ-by-NQ part of this array contains
C the state dynamics matrix (in a real Schur form) of the
C numerator factor Q of the right coprime factorization with
C inner denominator of G (see METHOD).
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input/state matrix of the system.
C On exit, the leading NQ-by-M part of this array contains
C the input/state matrix of the numerator factor Q of the
C right coprime factorization with inner denominator of G
C (see METHOD).
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the state/output matrix of the system.
C On exit, the leading P-by-NQ part of this array contains
C the state/output matrix of the numerator factor Q of the
C right coprime factorization with inner denominator of G
C (see METHOD).
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the input/output matrix of the system.
C If DICO = 'C', D must be a null matrix.
C On exit, the leading P-by-M part of this array contains
C the input/output matrix of the numerator factor Q of
C the right coprime factorization with inner denominator
C of G (see METHOD).
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C NQ (output) INTEGER
C The order of the resulting numerator Q of the right
C coprime factorization with inner denominator of G (see
C METHOD).
C Generally, NQ = N - NS, where NS is the number of
C uncontrollable unstable eigenvalues.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The absolute tolerance level below which the elements of
C B are considered zero (used for controllability tests).
C If the user sets TOL <= 0, then an implicitly computed,
C default tolerance, defined by TOLDEF = N*EPS*NORM(B),
C is used instead, where EPS is the machine precision
C (see LAPACK Library routine DLAMCH) and NORM(B) denotes
C the 1-norm of B.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of working array DWORK.
C LDWORK >= MAX( 1, M*(N+M) + MAX( N*(N+5), M*(M+2), 4*P ),
C N*( MAX( N, P ) + 4 ) + MIN( N, P ) ).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = K: K violations of the numerical stability condition
C occured during the assignment of eigenvalues in
C computing the right coprime factorization with inner
C denominator of G (see the SLICOT subroutine SB08DD).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction of A to a real Schur form failed;
C = 2: a failure was detected during the reordering of the
C real Schur form of A, or in the iterative process
C for reordering the eigenvalues of Z'*(A + B*F)*Z
C along the diagonal (see SLICOT routine SB08DD);
C = 3: if DICO = 'C' and the matrix A has a controllable
C eigenvalue on the imaginary axis, or DICO = 'D'
C and A has a controllable eigenvalue on the unit
C circle;
C = 4: the solution of Lyapunov equation failed because
C the equation is singular;
C = 5: if DICO = 'C' and D is a nonzero matrix;
C = 6: if JOBN = 'H' and the system is unstable.
C
C METHOD
C
C The subroutine is based on the algorithms proposed in [1] and [2].
C
C If the given transfer-function matrix G is unstable, then a right
C coprime factorization with inner denominator of G is first
C computed
C -1
C G = Q*R ,
C
C where Q and R are stable transfer-function matrices and R is
C inner. If G is stable, then Q = G and R = I.
C Let (AQ,BQ,CQ,DQ) be the state-space representation of Q.
C
C If DICO = 'C', then the L2-norm of G is computed as
C
C NORM2(G) = NORM2(Q) = SQRT(TRACE(BQ'*X*BQ)),
C
C where X satisfies the continuous-time Lyapunov equation
C
C AQ'*X + X*AQ + CQ'*CQ = 0.
C
C If DICO = 'D', then the l2-norm of G is computed as
C
C NORM2(G) = NORM2(Q) = SQRT(TRACE(BQ'*X*BQ+DQ'*DQ)),
C
C where X satisfies the discrete-time Lyapunov equation
C
C AQ'*X*AQ - X + CQ'*CQ = 0.
C
C REFERENCES
C
C [1] Varga A.
C On computing 2-norms of transfer-function matrices.
C Proc. 1992 ACC, Chicago, June 1992.
C
C [2] Varga A.
C A Schur method for computing coprime factorizations with
C inner denominators and applications in model reduction.
C Proc. ACC'93, San Francisco, CA, pp. 2130-2131, 1993.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires no more than 14N floating point
C operations.
C
C CONTRIBUTOR
C
C C. Oara and A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, July 1998.
C Based on the RASP routine SL2NRM.
C
C REVISIONS
C
C Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C Oct. 2001, V. Sima, Research Institute for Informatics, Bucharest.
C Jan. 2003, V. Sima, Research Institute for Informatics, Bucharest.
C
C KEYWORDS
C
C Coprime factorization, Lyapunov equation, multivariable system,
C state-space model, system norms.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOBN
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD, LDWORK, M,
$ N, NQ, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DWORK(*)
C .. Local Scalars ..
LOGICAL DISCR
INTEGER KCR, KDR, KRW, KTAU, KU, MXNP, NR
DOUBLE PRECISION S2NORM, SCALE, WRKOPT
C .. External functions ..
LOGICAL LSAME
DOUBLE PRECISION DLANGE, DLAPY2
EXTERNAL DLANGE, DLAPY2, LSAME
C .. External subroutines ..
EXTERNAL DLACPY, DTRMM, SB03OU, SB08DD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C .. Executable Statements ..
C
DISCR = LSAME( DICO, 'D' )
INFO = 0
IWARN = 0
C
C Check the scalar input parameters.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( LSAME( JOBN, 'H' ) .OR. LSAME( JOBN, 'L' ) ) )
$ THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( P.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -11
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -13
ELSE IF( LDWORK.LT.MAX( 1, M*( N + M ) +
$ MAX( N*( N + 5 ), M*( M + 2 ), 4*P ),
$ N*( MAX( N, P ) + 4 ) + MIN( N, P ) ) )
$ THEN
INFO = -17
END IF
IF( INFO.NE.0 )THEN
C
C Error return.
C
CALL XERBLA( 'AB13BD', -INFO )
RETURN
END IF
C
C Compute the Frobenius norm of D.
C
S2NORM = DLANGE( 'Frobenius', P, M, D, LDD, DWORK )
IF( .NOT.DISCR .AND. S2NORM.NE.ZERO ) THEN
INFO = 5
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
NQ = 0
AB13BD = ZERO
DWORK(1) = ONE
RETURN
END IF
C
KCR = 1
KDR = KCR + M*N
KRW = KDR + M*M
C
C Compute the right coprime factorization with inner denominator
C of G.
C
C Workspace needed: M*(N+M);
C Additional workspace: need MAX( N*(N+5), M*(M+2), 4*M, 4*P );
C prefer larger.
C
CALL SB08DD( DICO, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD, NQ,
$ NR, DWORK(KCR), M, DWORK(KDR), M, TOL, DWORK(KRW),
$ LDWORK-KRW+1, IWARN, INFO )
IF( INFO.NE.0 )
$ RETURN
C
WRKOPT = DWORK(KRW) + DBLE( KRW-1 )
C
C Check stability.
C
IF( LSAME( JOBN, 'H' ) .AND. NR.GT.0 ) THEN
INFO = 6
RETURN
END IF
C
IF( NQ.GT.0 ) THEN
KU = 1
MXNP = MAX( NQ, P )
KTAU = NQ*MXNP + 1
KRW = KTAU + MIN( NQ, P )
C
C Find X, the solution of Lyapunov equation.
C
C Workspace needed: N*MAX(N,P) + MIN(N,P);
C Additional workspace: 4*N;
C prefer larger.
C
CALL DLACPY( 'Full', P, NQ, C, LDC, DWORK(KU), MXNP )
CALL SB03OU( DISCR, .FALSE., NQ, P, A, LDA, DWORK(KU), MXNP,
$ DWORK(KTAU), DWORK(KU), NQ, SCALE, DWORK(KRW),
$ LDWORK-KRW+1, INFO )
IF( INFO.NE.0 ) THEN
IF( INFO.EQ.1 ) THEN
INFO = 4
ELSE IF( INFO.EQ.2 ) THEN
INFO = 3
END IF
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(KRW) + DBLE( KRW-1 ) )
C
C Add the contribution of BQ'*X*BQ.
C
C Workspace needed: N*(N+M).
C
KTAU = NQ*NQ + 1
CALL DLACPY( 'Full', NQ, M, B, LDB, DWORK(KTAU), NQ )
CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', NQ, M,
$ ONE, DWORK(KU), NQ, DWORK(KTAU), NQ )
IF( NR.GT.0 )
$ S2NORM = DLANGE( 'Frobenius', P, M, D, LDD, DWORK )
S2NORM = DLAPY2( S2NORM, DLANGE( 'Frobenius', NQ, M,
$ DWORK(KTAU), NQ, DWORK )
$ / SCALE )
END IF
C
AB13BD = S2NORM
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of AB13BD ***
END