dynare/mex/sources/libslicot/AB09ID.f

1049 lines
43 KiB
Fortran

SUBROUTINE AB09ID( DICO, JOBC, JOBO, JOB, WEIGHT, EQUIL, ORDSEL,
$ N, M, P, NV, PV, NW, MW, NR, ALPHA, ALPHAC,
$ ALPHAO, A, LDA, B, LDB, C, LDC, D, LDD,
$ AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
$ AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
$ NS, HSV, TOL1, TOL2, IWORK, DWORK, LDWORK,
$ IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr,Dr) for an original
C state-space representation (A,B,C,D) by using the frequency
C weighted square-root or balancing-free square-root
C Balance & Truncate (B&T) or Singular Perturbation Approximation
C (SPA) model reduction methods. The algorithm tries to minimize
C the norm of the frequency-weighted error
C
C ||V*(G-Gr)*W||
C
C where G and Gr are the transfer-function matrices of the original
C and reduced order models, respectively, and V and W are
C frequency-weighting transfer-function matrices. V and W must not
C have poles on the imaginary axis for a continuous-time
C system or on the unit circle for a discrete-time system.
C If G is unstable, only the ALPHA-stable part of G is reduced.
C In case of possible pole-zero cancellations in V*G and/or G*W,
C the absolute values of parameters ALPHAO and/or ALPHAC must be
C different from 1.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOBC CHARACTER*1
C Specifies the choice of frequency-weighted controllability
C Grammian as follows:
C = 'S': choice corresponding to a combination method [4]
C of the approaches of Enns [1] and Lin-Chiu [2,3];
C = 'E': choice corresponding to the stability enhanced
C modified combination method of [4].
C
C JOBO CHARACTER*1
C Specifies the choice of frequency-weighted observability
C Grammian as follows:
C = 'S': choice corresponding to a combination method [4]
C of the approaches of Enns [1] and Lin-Chiu [2,3];
C = 'E': choice corresponding to the stability enhanced
C modified combination method of [4].
C
C JOB CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root Balance & Truncate method;
C = 'F': use the balancing-free square-root
C Balance & Truncate method;
C = 'S': use the square-root Singular Perturbation
C Approximation method;
C = 'P': use the balancing-free square-root
C Singular Perturbation Approximation method.
C
C WEIGHT CHARACTER*1
C Specifies the type of frequency weighting, as follows:
C = 'N': no weightings are used (V = I, W = I);
C = 'L': only left weighting V is used (W = I);
C = 'R': only right weighting W is used (V = I);
C = 'B': both left and right weightings V and W are used.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to preliminarily
C equilibrate the triplet (A,B,C) as follows:
C = 'S': perform equilibration (scaling);
C = 'N': do not perform equilibration.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL1.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation,
C i.e., the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NV (input) INTEGER
C The order of the matrix AV. Also the number of rows of
C the matrix BV and the number of columns of the matrix CV.
C NV represents the dimension of the state vector of the
C system with the transfer-function matrix V. NV >= 0.
C
C PV (input) INTEGER
C The number of rows of the matrices CV and DV. PV >= 0.
C PV represents the dimension of the output vector of the
C system with the transfer-function matrix V.
C
C NW (input) INTEGER
C The order of the matrix AW. Also the number of rows of
C the matrix BW and the number of columns of the matrix CW.
C NW represents the dimension of the state vector of the
C system with the transfer-function matrix W. NW >= 0.
C
C MW (input) INTEGER
C The number of columns of the matrices BW and DW. MW >= 0.
C MW represents the dimension of the input vector of the
C system with the transfer-function matrix W.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of the
C resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. For a system with NU ALPHA-unstable
C eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
C NR is set as follows: if ORDSEL = 'F', NR is equal to
C NU+MIN(MAX(0,NR-NU),NMIN), where NR is the desired order
C on entry, NMIN is the number of frequency-weighted Hankel
C singular values greater than NS*EPS*S1, EPS is the
C machine precision (see LAPACK Library Routine DLAMCH)
C and S1 is the largest Hankel singular value (computed
C in HSV(1)); NR can be further reduced to ensure
C HSV(NR-NU) > HSV(NR+1-NU);
C if ORDSEL = 'A', NR is the sum of NU and the number of
C Hankel singular values greater than MAX(TOL1,NS*EPS*S1).
C
C ALPHA (input) DOUBLE PRECISION
C Specifies the ALPHA-stability boundary for the eigenvalues
C of the state dynamics matrix A. For a continuous-time
C system (DICO = 'C'), ALPHA <= 0 is the boundary value for
C the real parts of eigenvalues, while for a discrete-time
C system (DICO = 'D'), 0 <= ALPHA <= 1 represents the
C boundary value for the moduli of eigenvalues.
C The ALPHA-stability domain does not include the boundary.
C
C ALPHAC (input) DOUBLE PRECISION
C Combination method parameter for defining the
C frequency-weighted controllability Grammian (see METHOD);
C ABS(ALPHAC) <= 1.
C
C ALPHAO (input) DOUBLE PRECISION
C Combination method parameter for defining the
C frequency-weighted observability Grammian (see METHOD);
C ABS(ALPHAO) <= 1.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the
C reduced order system.
C The resulting A has a block-diagonal form with two blocks.
C For a system with NU ALPHA-unstable eigenvalues and
C NS ALPHA-stable eigenvalues (NU+NS = N), the leading
C NU-by-NU block contains the unreduced part of A
C corresponding to ALPHA-unstable eigenvalues.
C The trailing (NR+NS-N)-by-(NR+NS-N) block contains
C the reduced part of A corresponding to ALPHA-stable
C eigenvalues.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the original input/output matrix D.
C On exit, if INFO = 0, the leading P-by-M part of this
C array contains the input/output matrix Dr of the reduced
C order system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C AV (input/output) DOUBLE PRECISION array, dimension (LDAV,NV)
C On entry, if WEIGHT = 'L' or 'B', the leading NV-by-NV
C part of this array must contain the state matrix AV of
C the system with the transfer-function matrix V.
C On exit, if WEIGHT = 'L' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading NVR-by-NVR part of this array
C contains the state matrix of a minimal realization of V
C in a real Schur form. NVR is returned in IWORK(2).
C AV is not referenced if WEIGHT = 'R' or 'N',
C or MIN(N,M,P) = 0.
C
C LDAV INTEGER
C The leading dimension of array AV.
C LDAV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C LDAV >= 1, if WEIGHT = 'R' or 'N'.
C
C BV (input/output) DOUBLE PRECISION array, dimension (LDBV,P)
C On entry, if WEIGHT = 'L' or 'B', the leading NV-by-P part
C of this array must contain the input matrix BV of the
C system with the transfer-function matrix V.
C On exit, if WEIGHT = 'L' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading NVR-by-P part of this array contains
C the input matrix of a minimal realization of V.
C BV is not referenced if WEIGHT = 'R' or 'N',
C or MIN(N,M,P) = 0.
C
C LDBV INTEGER
C The leading dimension of array BV.
C LDBV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C LDBV >= 1, if WEIGHT = 'R' or 'N'.
C
C CV (input/output) DOUBLE PRECISION array, dimension (LDCV,NV)
C On entry, if WEIGHT = 'L' or 'B', the leading PV-by-NV
C part of this array must contain the output matrix CV of
C the system with the transfer-function matrix V.
C On exit, if WEIGHT = 'L' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading PV-by-NVR part of this array
C contains the output matrix of a minimal realization of V.
C CV is not referenced if WEIGHT = 'R' or 'N',
C or MIN(N,M,P) = 0.
C
C LDCV INTEGER
C The leading dimension of array CV.
C LDCV >= MAX(1,PV), if WEIGHT = 'L' or 'B';
C LDCV >= 1, if WEIGHT = 'R' or 'N'.
C
C DV (input) DOUBLE PRECISION array, dimension (LDDV,P)
C If WEIGHT = 'L' or 'B', the leading PV-by-P part of this
C array must contain the feedthrough matrix DV of the system
C with the transfer-function matrix V.
C DV is not referenced if WEIGHT = 'R' or 'N',
C or MIN(N,M,P) = 0.
C
C LDDV INTEGER
C The leading dimension of array DV.
C LDDV >= MAX(1,PV), if WEIGHT = 'L' or 'B';
C LDDV >= 1, if WEIGHT = 'R' or 'N'.
C
C AW (input/output) DOUBLE PRECISION array, dimension (LDAW,NW)
C On entry, if WEIGHT = 'R' or 'B', the leading NW-by-NW
C part of this array must contain the state matrix AW of
C the system with the transfer-function matrix W.
C On exit, if WEIGHT = 'R' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading NWR-by-NWR part of this array
C contains the state matrix of a minimal realization of W
C in a real Schur form. NWR is returned in IWORK(3).
C AW is not referenced if WEIGHT = 'L' or 'N',
C or MIN(N,M,P) = 0.
C
C LDAW INTEGER
C The leading dimension of array AW.
C LDAW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C LDAW >= 1, if WEIGHT = 'L' or 'N'.
C
C BW (input/output) DOUBLE PRECISION array, dimension (LDBW,MW)
C On entry, if WEIGHT = 'R' or 'B', the leading NW-by-MW
C part of this array must contain the input matrix BW of the
C system with the transfer-function matrix W.
C On exit, if WEIGHT = 'R' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading NWR-by-MW part of this array
C contains the input matrix of a minimal realization of W.
C BW is not referenced if WEIGHT = 'L' or 'N',
C or MIN(N,M,P) = 0.
C
C LDBW INTEGER
C The leading dimension of array BW.
C LDBW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C LDBW >= 1, if WEIGHT = 'L' or 'N'.
C
C CW (input/output) DOUBLE PRECISION array, dimension (LDCW,NW)
C On entry, if WEIGHT = 'R' or 'B', the leading M-by-NW part
C of this array must contain the output matrix CW of the
C system with the transfer-function matrix W.
C On exit, if WEIGHT = 'R' or 'B', MIN(N,M,P) > 0 and
C INFO = 0, the leading M-by-NWR part of this array contains
C the output matrix of a minimal realization of W.
C CW is not referenced if WEIGHT = 'L' or 'N',
C or MIN(N,M,P) = 0.
C
C LDCW INTEGER
C The leading dimension of array CW.
C LDCW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C LDCW >= 1, if WEIGHT = 'L' or 'N'.
C
C DW (input) DOUBLE PRECISION array, dimension (LDDW,MW)
C If WEIGHT = 'R' or 'B', the leading M-by-MW part of this
C array must contain the feedthrough matrix DW of the system
C with the transfer-function matrix W.
C DW is not referenced if WEIGHT = 'L' or 'N',
C or MIN(N,M,P) = 0.
C
C LDDW INTEGER
C The leading dimension of array DW.
C LDDW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C LDDW >= 1, if WEIGHT = 'L' or 'N'.
C
C NS (output) INTEGER
C The dimension of the ALPHA-stable subsystem.
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, the leading NS elements of this array contain
C the frequency-weighted Hankel singular values, ordered
C decreasingly, of the ALPHA-stable part of the original
C system.
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If ORDSEL = 'A', TOL1 contains the tolerance for
C determining the order of reduced system.
C For model reduction, the recommended value is
C TOL1 = c*S1, where c is a constant in the
C interval [0.00001,0.001], and S1 is the largest
C frequency-weighted Hankel singular value of the
C ALPHA-stable part of the original system (computed
C in HSV(1)).
C If TOL1 <= 0 on entry, the used default value is
C TOL1 = NS*EPS*S1, where NS is the number of
C ALPHA-stable eigenvalues of A and EPS is the machine
C precision (see LAPACK Library Routine DLAMCH).
C If ORDSEL = 'F', the value of TOL1 is ignored.
C
C TOL2 DOUBLE PRECISION
C The tolerance for determining the order of a minimal
C realization of the ALPHA-stable part of the given system.
C The recommended value is TOL2 = NS*EPS*S1.
C This value is used by default if TOL2 <= 0 on entry.
C If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
C
C Workspace
C
C IWORK INTEGER array, dimension
C ( MAX( 3, LIWRK1, LIWRK2, LIWRK3 ) ), where
C LIWRK1 = 0, if JOB = 'B';
C LIWRK1 = N, if JOB = 'F';
C LIWRK1 = 2*N, if JOB = 'S' or 'P';
C LIWRK2 = 0, if WEIGHT = 'R' or 'N' or NV = 0;
C LIWRK2 = NV+MAX(P,PV), if WEIGHT = 'L' or 'B' and NV > 0;
C LIWRK3 = 0, if WEIGHT = 'L' or 'N' or NW = 0;
C LIWRK3 = NW+MAX(M,MW), if WEIGHT = 'R' or 'B' and NW > 0.
C On exit, if INFO = 0, IWORK(1) contains the order of a
C minimal realization of the stable part of the system,
C IWORK(2) and IWORK(3) contain the actual orders
C of the state space realizations of V and W, respectively.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( LMINL, LMINR, LRCF,
C 2*N*N + MAX( 1, LLEFT, LRIGHT, 2*N*N+5*N,
C N*MAX(M,P) ) ),
C where
C LMINL = 0, if WEIGHT = 'R' or 'N' or NV = 0; otherwise,
C LMINL = MAX(LLCF,NV+MAX(NV,3*P)) if P = PV;
C LMINL = MAX(P,PV)*(2*NV+MAX(P,PV))+
C MAX(LLCF,NV+MAX(NV,3*P,3*PV)) if P <> PV;
C LRCF = 0, and
C LMINR = 0, if WEIGHT = 'L' or 'N' or NW = 0; otherwise,
C LMINR = NW+MAX(NW,3*M) if M = MW;
C LMINR = 2*NW*MAX(M,MW)+NW+MAX(NW,3*M,3*MW) if M <> MW;
C LLCF = PV*(NV+PV)+PV*NV+MAX(NV*(NV+5), PV*(PV+2),
C 4*PV, 4*P);
C LRCF = MW*(NW+MW)+MAX(NW*(NW+5),MW*(MW+2),4*MW,4*M)
C LLEFT = (N+NV)*(N+NV+MAX(N+NV,PV)+5)
C if WEIGHT = 'L' or 'B' and PV > 0;
C LLEFT = N*(P+5) if WEIGHT = 'R' or 'N' or PV = 0;
C LRIGHT = (N+NW)*(N+NW+MAX(N+NW,MW)+5)
C if WEIGHT = 'R' or 'B' and MW > 0;
C LRIGHT = N*(M+5) if WEIGHT = 'L' or 'N' or MW = 0.
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than NSMIN, the sum of the order of the
C ALPHA-unstable part and the order of a minimal
C realization of the ALPHA-stable part of the given
C system; in this case, the resulting NR is set equal
C to NSMIN;
C = 2: with ORDSEL = 'F', the selected order NR corresponds
C to repeated singular values for the ALPHA-stable
C part, which are neither all included nor all
C excluded from the reduced model; in this case, the
C resulting NR is automatically decreased to exclude
C all repeated singular values;
C = 3: with ORDSEL = 'F', the selected order NR is less
C than the order of the ALPHA-unstable part of the
C given system; in this case NR is set equal to the
C order of the ALPHA-unstable part.
C = 10+K: K violations of the numerical stability condition
C occured during the assignment of eigenvalues in the
C SLICOT Library routines SB08CD and/or SB08DD.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the computation of the ordered real Schur form of A
C failed;
C = 2: the separation of the ALPHA-stable/unstable
C diagonal blocks failed because of very close
C eigenvalues;
C = 3: the reduction to a real Schur form of the state
C matrix of a minimal realization of V failed;
C = 4: a failure was detected during the ordering of the
C real Schur form of the state matrix of a minimal
C realization of V or in the iterative process to
C compute a left coprime factorization with inner
C denominator;
C = 5: if DICO = 'C' and the matrix AV has an observable
C eigenvalue on the imaginary axis, or DICO = 'D' and
C AV has an observable eigenvalue on the unit circle;
C = 6: the reduction to a real Schur form of the state
C matrix of a minimal realization of W failed;
C = 7: a failure was detected during the ordering of the
C real Schur form of the state matrix of a minimal
C realization of W or in the iterative process to
C compute a right coprime factorization with inner
C denominator;
C = 8: if DICO = 'C' and the matrix AW has a controllable
C eigenvalue on the imaginary axis, or DICO = 'D' and
C AW has a controllable eigenvalue on the unit circle;
C = 9: the computation of eigenvalues failed;
C = 10: the computation of Hankel singular values failed.
C
C METHOD
C
C Let G be the transfer-function matrix of the original
C linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) + Du(t), (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09ID determines
C the matrices of a reduced order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) + Dr*u(t), (2)
C
C such that the corresponding transfer-function matrix Gr minimizes
C the norm of the frequency-weighted error
C
C V*(G-Gr)*W, (3)
C
C where V and W are transfer-function matrices without poles on the
C imaginary axis in continuous-time case or on the unit circle in
C discrete-time case.
C
C The following procedure is used to reduce G:
C
C 1) Decompose additively G, of order N, as
C
C G = G1 + G2,
C
C such that G1 = (A1,B1,C1,D) has only ALPHA-stable poles and
C G2 = (A2,B2,C2,0), of order NU, has only ALPHA-unstable poles.
C
C 2) Compute for G1 a B&T or SPA frequency-weighted approximation
C G1r of order NR-NU using the combination method or the
C modified combination method of [4].
C
C 3) Assemble the reduced model Gr as
C
C Gr = G1r + G2.
C
C For the frequency-weighted reduction of the ALPHA-stable part,
C several methods described in [4] can be employed in conjunction
C with the combination method and modified combination method
C proposed in [4].
C
C If JOB = 'B', the square-root B&T method is used.
C If JOB = 'F', the balancing-free square-root version of the
C B&T method is used.
C If JOB = 'S', the square-root version of the SPA method is used.
C If JOB = 'P', the balancing-free square-root version of the
C SPA method is used.
C
C For each of these methods, left and right truncation matrices
C are determined using the Cholesky factors of an input
C frequency-weighted controllability Grammian P and an output
C frequency-weighted observability Grammian Q.
C P and Q are computed from the controllability Grammian Pi of G*W
C and the observability Grammian Qo of V*G. Using special
C realizations of G*W and V*G, Pi and Qo are computed in the
C partitioned forms
C
C Pi = ( P11 P12 ) and Qo = ( Q11 Q12 ) ,
C ( P12' P22 ) ( Q12' Q22 )
C
C where P11 and Q11 are the leading N-by-N parts of Pi and Qo,
C respectively. Let P0 and Q0 be non-negative definite matrices
C defined below
C -1
C P0 = P11 - ALPHAC**2*P12*P22 *P21 ,
C -1
C Q0 = Q11 - ALPHAO**2*Q12*Q22 *Q21.
C
C The frequency-weighted controllability and observability
C Grammians, P and Q, respectively, are defined as follows:
C P = P0 if JOBC = 'S' (standard combination method [4]);
C P = P1 >= P0 if JOBC = 'E', where P1 is the controllability
C Grammian defined to enforce stability for a modified combination
C method of [4];
C Q = Q0 if JOBO = 'S' (standard combination method [4]);
C Q = Q1 >= Q0 if JOBO = 'E', where Q1 is the observability
C Grammian defined to enforce stability for a modified combination
C method of [4].
C
C If JOBC = JOBO = 'S' and ALPHAC = ALPHAO = 0, the choice of
C Grammians corresponds to the method of Enns [1], while if
C ALPHAC = ALPHAO = 1, the choice of Grammians corresponds
C to the method of Lin and Chiu [2,3].
C
C If JOBC = 'S' and ALPHAC = 1, no pole-zero cancellations must
C occur in G*W. If JOBO = 'S' and ALPHAO = 1, no pole-zero
C cancellations must occur in V*G. The presence of pole-zero
C cancellations leads to meaningless results and must be avoided.
C
C The frequency-weighted Hankel singular values HSV(1), ....,
C HSV(N) are computed as the square roots of the eigenvalues
C of the product P*Q.
C
C REFERENCES
C
C [1] Enns, D.
C Model reduction with balanced realizations: An error bound
C and a frequency weighted generalization.
C Proc. 23-th CDC, Las Vegas, pp. 127-132, 1984.
C
C [2] Lin, C.-A. and Chiu, T.-Y.
C Model reduction via frequency-weighted balanced realization.
C Control Theory and Advanced Technology, vol. 8,
C pp. 341-351, 1992.
C
C [3] Sreeram, V., Anderson, B.D.O and Madievski, A.G.
C New results on frequency weighted balanced reduction
C technique.
C Proc. ACC, Seattle, Washington, pp. 4004-4009, 1995.
C
C [4] Varga, A. and Anderson, B.D.O.
C Square-root balancing-free methods for the frequency-weighted
C balancing related model reduction.
C (report in preparation)
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root
C techniques.
C
C CONTRIBUTORS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, August 2000.
C D. Sima, University of Bucharest, August 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 2000.
C
C REVISIONS
C
C A. Varga, Australian National University, Canberra, November 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000,
C Sep. 2001.
C
C KEYWORDS
C
C Frequency weighting, model reduction, multivariable system,
C state-space model, state-space representation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION C100, ONE, ZERO
PARAMETER ( C100 = 100.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOB, JOBC, JOBO, ORDSEL, WEIGHT
INTEGER INFO, IWARN, LDA, LDAV, LDAW, LDB, LDBV, LDBW,
$ LDC, LDCV, LDCW, LDD, LDDV, LDDW, LDWORK, M, MW,
$ N, NR, NS, NV, NW, P, PV
DOUBLE PRECISION ALPHA, ALPHAC, ALPHAO, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), AV(LDAV,*), AW(LDAW,*),
$ B(LDB,*), BV(LDBV,*), BW(LDBW,*),
$ C(LDC,*), CV(LDCV,*), CW(LDCW,*),
$ D(LDD,*), DV(LDDV,*), DW(LDDW,*), DWORK(*),
$ HSV(*)
C .. Local Scalars ..
LOGICAL BAL, BTA, DISCR, FIXORD, FRWGHT, LEFTW, RIGHTW,
$ SCALE, SPA
INTEGER IERR, IWARNL, KBR, KBV, KBW, KCR, KCV, KCW, KDR,
$ KDV, KI, KL, KT, KTI, KU, KW, LCF, LDW, LW, NMR,
$ NN, NNQ, NNR, NNV, NNW, NRA, NU, NU1, NVR, NWR,
$ PPV, WRKOPT
DOUBLE PRECISION ALPWRK, MAXRED, SCALEC, SCALEO
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL AB09IX, AB09IY, DLACPY, SB08CD, SB08DD, TB01ID,
$ TB01KD, TB01PD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
BTA = LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'F' )
SPA = LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'P' )
BAL = LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'S' )
SCALE = LSAME( EQUIL, 'S' )
FIXORD = LSAME( ORDSEL, 'F' )
LEFTW = LSAME( WEIGHT, 'L' ) .OR. LSAME( WEIGHT, 'B' )
RIGHTW = LSAME( WEIGHT, 'R' ) .OR. LSAME( WEIGHT, 'B' )
FRWGHT = LEFTW .OR. RIGHTW
C
LW = 1
NN = N*N
NNV = N + NV
NNW = N + NW
PPV = MAX( P, PV )
C
IF( LEFTW .AND. PV.GT.0 ) THEN
LW = MAX( LW, NNV*( NNV + MAX( NNV, PV ) + 5 ) )
ELSE
LW = MAX( LW, N*( P + 5 ) )
END IF
C
IF( RIGHTW .AND. MW.GT.0 ) THEN
LW = MAX( LW, NNW*( NNW + MAX( NNW, MW ) + 5 ) )
ELSE
LW = MAX( LW, N*( M + 5 ) )
END IF
LW = 2*NN + MAX( LW, 2*NN + 5*N, N*MAX( M, P ) )
C
IF( LEFTW .AND. NV.GT.0 ) THEN
LCF = PV*( NV + PV ) + PV*NV +
$ MAX( NV*( NV + 5 ), PV*( PV + 2 ), 4*PPV )
IF( PV.EQ.P ) THEN
LW = MAX( LW, LCF, NV + MAX( NV, 3*P ) )
ELSE
LW = MAX( LW, PPV*( 2*NV + PPV ) +
$ MAX( LCF, NV + MAX( NV, 3*PPV ) ) )
END IF
END IF
C
IF( RIGHTW .AND. NW.GT.0 ) THEN
IF( MW.EQ.M ) THEN
LW = MAX( LW, NW + MAX( NW, 3*M ) )
ELSE
LW = MAX( LW, 2*NW*MAX( M, MW ) +
$ NW + MAX( NW, 3*M, 3*MW ) )
END IF
LW = MAX( LW, MW*( NW + MW ) +
$ MAX( NW*( NW + 5 ), MW*( MW + 2 ), 4*MW, 4*M ) )
END IF
C
C Check the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT.( LSAME( JOBC, 'S' ) .OR. LSAME( JOBC, 'E' ) ) )
$ THEN
INFO = -2
ELSE IF( .NOT.( LSAME( JOBO, 'S' ) .OR. LSAME( JOBO, 'E' ) ) )
$ THEN
INFO = -3
ELSE IF( .NOT. ( BTA .OR. SPA ) ) THEN
INFO = -4
ELSE IF( .NOT. ( FRWGHT .OR. LSAME( WEIGHT, 'N' ) ) ) THEN
INFO = -5
ELSE IF( .NOT. ( SCALE .OR. LSAME( EQUIL, 'N' ) ) ) THEN
INFO = -6
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -7
ELSE IF( N.LT.0 ) THEN
INFO = -8
ELSE IF( M.LT.0 ) THEN
INFO = -9
ELSE IF( P.LT.0 ) THEN
INFO = -10
ELSE IF( NV.LT.0 ) THEN
INFO = -11
ELSE IF( PV.LT.0 ) THEN
INFO = -12
ELSE IF( NW.LT.0 ) THEN
INFO = -13
ELSE IF( MW.LT.0 ) THEN
INFO = -14
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -15
ELSE IF( ( DISCR .AND. ( ALPHA.LT.ZERO .OR. ALPHA.GT.ONE ) ) .OR.
$ ( .NOT.DISCR .AND. ALPHA.GT.ZERO ) ) THEN
INFO = -16
ELSE IF( ABS( ALPHAC ).GT.ONE ) THEN
INFO = -17
ELSE IF( ABS( ALPHAO ).GT.ONE ) THEN
INFO = -18
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -20
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -22
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -24
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -26
ELSE IF( LDAV.LT.1 .OR. ( LEFTW .AND. LDAV.LT.NV ) ) THEN
INFO = -28
ELSE IF( LDBV.LT.1 .OR. ( LEFTW .AND. LDBV.LT.NV ) ) THEN
INFO = -30
ELSE IF( LDCV.LT.1 .OR. ( LEFTW .AND. LDCV.LT.PV ) ) THEN
INFO = -32
ELSE IF( LDDV.LT.1 .OR. ( LEFTW .AND. LDDV.LT.PV ) ) THEN
INFO = -34
ELSE IF( LDAW.LT.1 .OR. ( RIGHTW .AND. LDAW.LT.NW ) ) THEN
INFO = -36
ELSE IF( LDBW.LT.1 .OR. ( RIGHTW .AND. LDBW.LT.NW ) ) THEN
INFO = -38
ELSE IF( LDCW.LT.1 .OR. ( RIGHTW .AND. LDCW.LT.M ) ) THEN
INFO = -40
ELSE IF( LDDW.LT.1 .OR. ( RIGHTW .AND. LDDW.LT.M ) ) THEN
INFO = -42
ELSE IF( TOL2.GT.ZERO .AND. .NOT.FIXORD .AND. TOL2.GT.TOL1 ) THEN
INFO = -46
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -49
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09ID', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
NR = 0
NS = 0
IWORK(1) = 0
IWORK(2) = NV
IWORK(3) = NW
DWORK(1) = ONE
RETURN
END IF
C
IF( SCALE ) THEN
C
C Scale simultaneously the matrices A, B and C:
C A <- inv(D)*A*D, B <- inv(D)*B and C <- C*D, where D is a
C diagonal matrix.
C Workspace: N.
C
MAXRED = C100
CALL TB01ID( 'All', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
$ DWORK, INFO )
END IF
C
C Correct the value of ALPHA to ensure stability.
C
ALPWRK = ALPHA
IF( DISCR ) THEN
IF( ALPHA.EQ.ONE ) ALPWRK = ONE - SQRT( DLAMCH( 'E' ) )
ELSE
IF( ALPHA.EQ.ZERO ) ALPWRK = -SQRT( DLAMCH( 'E' ) )
END IF
C
C Allocate working storage.
C
KU = 1
KL = KU + NN
KI = KL + N
KW = KI + N
C
C Reduce A to a block-diagonal real Schur form, with the
C ALPHA-unstable part in the leading diagonal position, using a
C non-orthogonal similarity transformation, A <- inv(T)*A*T, and
C apply the transformation to B and C: B <- inv(T)*B and C <- C*T.
C
C Workspace needed: N*(N+2);
C Additional workspace: need 3*N;
C prefer larger.
C
CALL TB01KD( DICO, 'Unstable', 'General', N, M, P, ALPWRK, A, LDA,
$ B, LDB, C, LDC, NU, DWORK(KU), N, DWORK(KL),
$ DWORK(KI), DWORK(KW), LDWORK-KW+1, IERR )
C
IF( IERR.NE.0 ) THEN
IF( IERR.NE.3 ) THEN
INFO = 1
ELSE
INFO = 2
END IF
RETURN
END IF
C
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C Determine NRA, the desired order for the reduction of stable part.
C
IWARNL = 0
NS = N - NU
IF( FIXORD ) THEN
NRA = MAX( 0, NR-NU )
IF( NR.LT.NU )
$ IWARNL = 3
ELSE
NRA = 0
END IF
C
C Finish if only unstable part is present.
C
IF( NS.EQ.0 ) THEN
NR = NU
DWORK(1) = WRKOPT
IWORK(1) = 0
IWORK(2) = NV
IWORK(3) = NW
RETURN
END IF
C
NVR = NV
IF( LEFTW .AND. NV.GT.0 ) THEN
C
C Compute a left-coprime factorization with inner denominator
C of a minimal realization of V. The resulting AV is in
C real Schur form.
C Workspace needed: real LV+MAX( 1, LCF,
C NV + MAX( NV, 3*P, 3*PV ) ),
C where
C LV = 0 if P = PV and
C LV = MAX(P,PV)*(2*NV+MAX(P,PV))
C otherwise;
C LCF = PV*(NV+PV) +
C MAX( 1, PV*NV + MAX( NV*(NV+5),
C PV*(PV+2),4*PV,4*P ) );
C prefer larger;
C integer NV + MAX(P,PV).
C
IF( P.EQ.PV ) THEN
KW = 1
CALL TB01PD( 'Minimal', 'Scale', NV, P, PV, AV, LDAV,
$ BV, LDBV, CV, LDCV, NVR, ZERO,
$ IWORK, DWORK, LDWORK, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
KBR = 1
KDR = KBR + PV*NVR
KW = KDR + PV*PV
CALL SB08CD( DICO, NVR, P, PV, AV, LDAV, BV, LDBV, CV, LDCV,
$ DV, LDDV, NNQ, NNR, DWORK(KBR), MAX( 1, NVR ),
$ DWORK(KDR), PV, ZERO, DWORK(KW), LDWORK-KW+1,
$ IWARN, IERR )
ELSE
LDW = MAX( P, PV )
KBV = 1
KCV = KBV + NV*LDW
KW = KCV + NV*LDW
CALL DLACPY( 'Full', NV, P, BV, LDBV, DWORK(KBV), NV )
CALL DLACPY( 'Full', PV, NV, CV, LDCV, DWORK(KCV), LDW )
CALL TB01PD( 'Minimal', 'Scale', NV, P, PV, AV, LDAV,
$ DWORK(KBV), NV, DWORK(KCV), LDW, NVR, ZERO,
$ IWORK, DWORK(KW), LDWORK-KW+1, INFO )
KDV = KW
KBR = KDV + LDW*LDW
KDR = KBR + PV*NVR
KW = KDR + PV*PV
CALL DLACPY( 'Full', PV, P, DV, LDDV, DWORK(KDV), LDW )
CALL SB08CD( DICO, NVR, P, PV, AV, LDAV, DWORK(KBV), NV,
$ DWORK(KCV), LDW, DWORK(KDV), LDW, NNQ, NNR,
$ DWORK(KBR), MAX( 1, NVR ), DWORK(KDR), PV,
$ ZERO, DWORK(KW), LDWORK-KW+1, IWARN, IERR )
CALL DLACPY( 'Full', NVR, P, DWORK(KBV), NV, BV, LDBV )
CALL DLACPY( 'Full', PV, NVR, DWORK(KCV), LDW, CV, LDCV )
CALL DLACPY( 'Full', PV, P, DWORK(KDV), LDW, DV, LDDV )
END IF
IF( IERR.NE.0 ) THEN
INFO = IERR + 2
RETURN
END IF
NVR = NNQ
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
IF( IWARN.GT.0 )
$ IWARN = 10 + IWARN
END IF
C
NWR = NW
IF( RIGHTW .AND. NW.GT.0 ) THEN
C
C Compute a minimal realization of W.
C Workspace needed: real LW+MAX(1, NW + MAX(NW, 3*M, 3*MW));
C where
C LW = 0, if M = MW and
C LW = 2*NW*MAX(M,MW), otherwise;
C prefer larger;
C integer NW + MAX(M,MW).
C
IF( M.EQ.MW ) THEN
KW = 1
CALL TB01PD( 'Minimal', 'Scale', NW, MW, M, AW, LDAW,
$ BW, LDBW, CW, LDCW, NWR, ZERO, IWORK, DWORK,
$ LDWORK, INFO )
ELSE
LDW = MAX( M, MW )
KBW = 1
KCW = KBW + NW*LDW
KW = KCW + NW*LDW
CALL DLACPY( 'Full', NW, MW, BW, LDBW, DWORK(KBW), NW )
CALL DLACPY( 'Full', M, NW, CW, LDCW, DWORK(KCW), LDW )
CALL TB01PD( 'Minimal', 'Scale', NW, MW, M, AW, LDAW,
$ DWORK(KBW), NW, DWORK(KCW), LDW, NWR, ZERO,
$ IWORK, DWORK(KW), LDWORK-KW+1, INFO )
CALL DLACPY( 'Full', NWR, MW, DWORK(KBW), NW, BW, LDBW )
CALL DLACPY( 'Full', M, NWR, DWORK(KCW), LDW, CW, LDCW )
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
END IF
C
IF( RIGHTW .AND. NWR.GT.0 ) THEN
C
C Compute a right-coprime factorization with inner denominator
C of the minimal realization of W. The resulting AW is in
C real Schur form.
C
C Workspace needed: MW*(NW+MW) +
C MAX( 1, NW*(NW+5), MW*(MW+2), 4*MW, 4*M );
C prefer larger.
C
LDW = MAX( 1, MW )
KCR = 1
KDR = KCR + NWR*LDW
KW = KDR + MW*LDW
CALL SB08DD( DICO, NWR, MW, M, AW, LDAW, BW, LDBW, CW, LDCW,
$ DW, LDDW, NNQ, NNR, DWORK(KCR), LDW, DWORK(KDR),
$ LDW, ZERO, DWORK(KW), LDWORK-KW+1, IWARN, IERR )
IF( IERR.NE.0 ) THEN
INFO = IERR + 5
RETURN
END IF
NWR = NNQ
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
IF( IWARN.GT.0 )
$ IWARN = 10 + IWARN
END IF
C
NU1 = NU + 1
C
C Allocate working storage.
C
KT = 1
KTI = KT + NN
KW = KTI + NN
C
C Compute in DWORK(KTI) and DWORK(KT) the Cholesky factors S and R
C of the controllability and observability Grammians, respectively.
C Real workspace: need 2*N*N + MAX( 1, LLEFT, LRIGHT ),
C where
C LLEFT = (N+NV)*(N+NV+MAX(N+NV,PV)+5)
C if WEIGHT = 'L' or 'B' and PV > 0;
C LLEFT = N*(P+5) if WEIGHT = 'R' or 'N' or PV = 0;
C LRIGHT = (N+NW)*(N+NW+MAX(N+NW,MW)+5)
C if WEIGHT = 'R' or 'B' and MW > 0;
C LRIGHT = N*(M+5) if WEIGHT = 'L' or 'N' or MW = 0.
C prefer larger.
C
CALL AB09IY( DICO, JOBC, JOBO, WEIGHT, NS, M, P, NVR, PV, NWR,
$ MW, ALPHAC, ALPHAO, A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, AV, LDAV, BV, LDBV, CV, LDCV,
$ DV, LDDV, AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
$ SCALEC, SCALEO, DWORK(KTI), N, DWORK(KT), N,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 9
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Compute a BTA or SPA of the stable part.
C Real workspace: need 2*N*N + MAX( 1, 2*N*N+5*N, N*MAX(M,P) ).
C
CALL AB09IX( DICO, JOB, 'Schur', ORDSEL, NS, M, P, NRA,
$ SCALEC, SCALEO, A(NU1,NU1), LDA, B(NU1,1), LDB,
$ C(1,NU1), LDC, D, LDD, DWORK(KTI), N, DWORK(KT), N,
$ NMR, HSV, TOL1, TOL2, IWORK, DWORK(KW), LDWORK-KW+1,
$ IWARN, IERR )
IWARN = MAX( IWARN, IWARNL )
IF( IERR.NE.0 ) THEN
INFO = 10
RETURN
END IF
NR = NRA + NU
C
DWORK(1) = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
IWORK(1) = NMR
IWORK(2) = NVR
IWORK(3) = NWR
C
RETURN
C *** Last line of AB09ID ***
END