dynare/mex/sources/libslicot/AB09HD.f

672 lines
26 KiB
Fortran

SUBROUTINE AB09HD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR, ALPHA,
$ BETA, A, LDA, B, LDB, C, LDC, D, LDD, NS, HSV,
$ TOL1, TOL2, IWORK, DWORK, LDWORK, BWORK, IWARN,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr,Dr) for an original
C state-space representation (A,B,C,D) by using the stochastic
C balancing approach in conjunction with the square-root or
C the balancing-free square-root Balance & Truncate (B&T)
C or Singular Perturbation Approximation (SPA) model reduction
C methods for the ALPHA-stable part of the system.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOB CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root Balance & Truncate method;
C = 'F': use the balancing-free square-root
C Balance & Truncate method;
C = 'S': use the square-root Singular Perturbation
C Approximation method;
C = 'P': use the balancing-free square-root
C Singular Perturbation Approximation method.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to preliminarily
C equilibrate the triplet (A,B,C) as follows:
C = 'S': perform equilibration (scaling);
C = 'N': do not perform equilibration.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL1.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation,
C i.e., the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C P <= M if BETA = 0.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of the
C resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. For a system with NU ALPHA-unstable
C eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
C NR is set as follows: if ORDSEL = 'F', NR is equal to
C NU+MIN(MAX(0,NR-NU),NMIN), where NR is the desired order
C on entry, and NMIN is the order of a minimal realization
C of the ALPHA-stable part of the given system; NMIN is
C determined as the number of Hankel singular values greater
C than NS*EPS, where EPS is the machine precision
C (see LAPACK Library Routine DLAMCH);
C if ORDSEL = 'A', NR is the sum of NU and the number of
C Hankel singular values greater than MAX(TOL1,NS*EPS);
C NR can be further reduced to ensure that
C HSV(NR-NU) > HSV(NR+1-NU).
C
C ALPHA (input) DOUBLE PRECISION
C Specifies the ALPHA-stability boundary for the eigenvalues
C of the state dynamics matrix A. For a continuous-time
C system (DICO = 'C'), ALPHA <= 0 is the boundary value for
C the real parts of eigenvalues, while for a discrete-time
C system (DICO = 'D'), 0 <= ALPHA <= 1 represents the
C boundary value for the moduli of eigenvalues.
C The ALPHA-stability domain does not include the boundary.
C
C BETA (input) DOUBLE PRECISION
C BETA > 0 specifies the absolute/relative error weighting
C parameter. A large positive value of BETA favours the
C minimization of the absolute approximation error, while a
C small value of BETA is appropriate for the minimization
C of the relative error.
C BETA = 0 means a pure relative error method and can be
C used only if rank(D) = P.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the reduced
C order system.
C The resulting A has a block-diagonal form with two blocks.
C For a system with NU ALPHA-unstable eigenvalues and
C NS ALPHA-stable eigenvalues (NU+NS = N), the leading
C NU-by-NU block contains the unreduced part of A
C corresponding to ALPHA-unstable eigenvalues in an
C upper real Schur form.
C The trailing (NR+NS-N)-by-(NR+NS-N) block contains
C the reduced part of A corresponding to ALPHA-stable
C eigenvalues.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the original input/output matrix D.
C On exit, if INFO = 0, the leading P-by-M part of this
C array contains the input/output matrix Dr of the reduced
C order system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C NS (output) INTEGER
C The dimension of the ALPHA-stable subsystem.
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, the leading NS elements of HSV contain the
C Hankel singular values of the phase system corresponding
C to the ALPHA-stable part of the original system.
C The Hankel singular values are ordered decreasingly.
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If ORDSEL = 'A', TOL1 contains the tolerance for
C determining the order of reduced system.
C For model reduction, the recommended value of TOL1 lies
C in the interval [0.00001,0.001].
C If TOL1 <= 0 on entry, the used default value is
C TOL1 = NS*EPS, where NS is the number of
C ALPHA-stable eigenvalues of A and EPS is the machine
C precision (see LAPACK Library Routine DLAMCH).
C If ORDSEL = 'F', the value of TOL1 is ignored.
C TOL1 < 1.
C
C TOL2 DOUBLE PRECISION
C The tolerance for determining the order of a minimal
C realization of the phase system (see METHOD) corresponding
C to the ALPHA-stable part of the given system.
C The recommended value is TOL2 = NS*EPS.
C This value is used by default if TOL2 <= 0 on entry.
C If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
C TOL2 < 1.
C
C Workspace
C
C IWORK INTEGER array, dimension MAX(1,2*N)
C On exit with INFO = 0, IWORK(1) contains the order of the
C minimal realization of the system.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK and DWORK(2) contains RCOND, the reciprocal
C condition number of the U11 matrix from the expression
C used to compute the solution X = U21*inv(U11) of the
C Riccati equation for spectral factorization.
C A small value RCOND indicates possible ill-conditioning
C of the respective Riccati equation.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 2*N*N + MB*(N+P) + MAX( 2, N*(MAX(N,MB,P)+5),
C 2*N*P+MAX(P*(MB+2),10*N*(N+1) ) ),
C where MB = M if BETA = 0 and MB = M+P if BETA > 0.
C For optimum performance LDWORK should be larger.
C
C BWORK LOGICAL array, dimension 2*N
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than NSMIN, the sum of the order of the
C ALPHA-unstable part and the order of a minimal
C realization of the ALPHA-stable part of the given
C system; in this case, the resulting NR is set equal
C to NSMIN;
C = 2: with ORDSEL = 'F', the selected order NR corresponds
C to repeated singular values for the ALPHA-stable
C part, which are neither all included nor all
C excluded from the reduced model; in this case, the
C resulting NR is automatically decreased to exclude
C all repeated singular values;
C = 3: with ORDSEL = 'F', the selected order NR is less
C than the order of the ALPHA-unstable part of the
C given system; in this case NR is set equal to the
C order of the ALPHA-unstable part.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the computation of the ordered real Schur form of A
C failed;
C = 2: the reduction of the Hamiltonian matrix to real
C Schur form failed;
C = 3: the reordering of the real Schur form of the
C Hamiltonian matrix failed;
C = 4: the Hamiltonian matrix has less than N stable
C eigenvalues;
C = 5: the coefficient matrix U11 in the linear system
C X*U11 = U21 to determine X is singular to working
C precision;
C = 6: BETA = 0 and D has not a maximal row rank;
C = 7: the computation of Hankel singular values failed;
C = 8: the separation of the ALPHA-stable/unstable diagonal
C blocks failed because of very close eigenvalues;
C = 9: the resulting order of reduced stable part is less
C than the number of unstable zeros of the stable
C part.
C METHOD
C
C Let be the following linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) + Du(t), (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09HD determines for
C the given system (1), the matrices of a reduced order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) + Dr*u(t), (2)
C
C such that
C
C INFNORM[inv(conj(W))*(G-Gr)] <=
C (1+HSV(NR+NS-N+1)) / (1-HSV(NR+NS-N+1)) + ...
C + (1+HSV(NS)) / (1-HSV(NS)) - 1,
C
C where G and Gr are transfer-function matrices of the systems
C (A,B,C,D) and (Ar,Br,Cr,Dr), respectively, W is the right, minimum
C phase spectral factor satisfying
C
C G1*conj(G1) = conj(W)* W, (3)
C
C G1 is the NS-order ALPHA-stable part of G, and INFNORM(G) is the
C infinity-norm of G. HSV(1), ... , HSV(NS) are the Hankel-singular
C values of the stable part of the phase system (Ap,Bp,Cp)
C with the transfer-function matrix
C
C P = inv(conj(W))*G1.
C
C If BETA > 0, then the model reduction is performed on [G BETA*I]
C instead of G. This is the recommended approach to be used when D
C has not a maximal row rank or when a certain balance between
C relative and absolute approximation errors is desired. For
C increasingly large values of BETA, the obtained reduced system
C assymptotically approaches that computed by using the
C Balance & Truncate or Singular Perturbation Approximation methods.
C
C Note: conj(G) denotes either G'(-s) for a continuous-time system
C or G'(1/z) for a discrete-time system.
C inv(G) is the inverse of G.
C
C The following procedure is used to reduce a given G:
C
C 1) Decompose additively G as
C
C G = G1 + G2,
C
C such that G1 = (As,Bs,Cs,D) has only ALPHA-stable poles and
C G2 = (Au,Bu,Cu) has only ALPHA-unstable poles.
C
C 2) Determine G1r, a reduced order approximation of the
C ALPHA-stable part G1 using the balancing stochastic method
C in conjunction with either the B&T [1,2] or SPA methods [3].
C
C 3) Assemble the reduced model Gr as
C
C Gr = G1r + G2.
C
C Note: The employed stochastic truncation algorithm [2,3] has the
C property that right half plane zeros of G1 remain as right half
C plane zeros of G1r. Thus, the order can not be chosen smaller than
C the sum of the number of unstable poles of G and the number of
C unstable zeros of G1.
C
C The reduction of the ALPHA-stable part G1 is done as follows.
C
C If JOB = 'B', the square-root stochastic Balance & Truncate
C method of [1] is used.
C For an ALPHA-stable continuous-time system (DICO = 'C'),
C the resulting reduced model is stochastically balanced.
C
C If JOB = 'F', the balancing-free square-root version of the
C stochastic Balance & Truncate method [1] is used to reduce
C the ALPHA-stable part G1.
C
C If JOB = 'S', the stochastic balancing method is used to reduce
C the ALPHA-stable part G1, in conjunction with the square-root
C version of the Singular Perturbation Approximation method [3,4].
C
C If JOB = 'P', the stochastic balancing method is used to reduce
C the ALPHA-stable part G1, in conjunction with the balancing-free
C square-root version of the Singular Perturbation Approximation
C method [3,4].
C
C REFERENCES
C
C [1] Varga A. and Fasol K.H.
C A new square-root balancing-free stochastic truncation model
C reduction algorithm.
C Proc. 12th IFAC World Congress, Sydney, 1993.
C
C [2] Safonov M. G. and Chiang R. Y.
C Model reduction for robust control: a Schur relative error
C method.
C Int. J. Adapt. Contr. Sign. Proc., vol. 2, pp. 259-272, 1988.
C
C [3] Green M. and Anderson B. D. O.
C Generalized balanced stochastic truncation.
C Proc. 29-th CDC, Honolulu, Hawaii, pp. 476-481, 1990.
C
C [4] Varga A.
C Balancing-free square-root algorithm for computing
C singular perturbation approximations.
C Proc. 30-th IEEE CDC, Brighton, Dec. 11-13, 1991,
C Vol. 2, pp. 1062-1065.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root or
C balancing-free square-root techniques. The effectiveness of the
C accuracy enhancing technique depends on the accuracy of the
C solution of a Riccati equation. An ill-conditioned Riccati
C solution typically results when [D BETA*I] is nearly
C rank deficient.
C 3
C The algorithm requires about 100N floating point operations.
C
C CONTRIBUTORS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, May 2000.
C D. Sima, University of Bucharest, May 2000.
C V. Sima, Research Institute for Informatics, Bucharest, May 2000.
C Partly based on the RASP routine SRBFS, by A. Varga, 1992.
C
C REVISIONS
C
C A. Varga, Australian National University, Canberra, November 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000.
C Oct. 2001.
C
C KEYWORDS
C
C Minimal realization, model reduction, multivariable system,
C state-space model, state-space representation,
C stochastic balancing.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, TWOBY3, C100
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ TWOBY3 = TWO/3.0D0, C100 = 100.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD, LDWORK,
$ M, N, NR, NS, P
DOUBLE PRECISION ALPHA, BETA, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), HSV(*)
LOGICAL BWORK(*)
C .. Local Scalars ..
LOGICAL BTA, DISCR, FIXORD, LEQUIL, SPA
INTEGER IERR, IWARNL, KB, KD, KT, KTI, KU, KW, KWI, KWR,
$ LW, LWR, MB, N2, NMR, NN, NRA, NU, NU1, WRKOPT
DOUBLE PRECISION EPSM, MAXRED, RICOND, SCALEC, SCALEO
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL AB04MD, AB09HY, AB09IX, DLACPY, DLASET, TB01ID,
$ TB01KD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
FIXORD = LSAME( ORDSEL, 'F' )
LEQUIL = LSAME( EQUIL, 'S' )
BTA = LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'F' )
SPA = LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'P' )
MB = M
IF( BETA.GT.ZERO ) MB = M + P
LW = 2*N*N + MB*(N+P) + MAX( 2, N*(MAX( N, MB, P )+5),
$ 2*N*P+MAX( P*(MB+2), 10*N*(N+1) ) )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( BTA .OR. SPA ) ) THEN
INFO = -2
ELSE IF( .NOT. ( LEQUIL .OR. LSAME( EQUIL, 'N' ) ) ) THEN
INFO = -3
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( M.LT.0 ) THEN
INFO = -6
ELSE IF( P.LT.0 .OR. ( BETA.EQ.ZERO .AND. P.GT.M ) ) THEN
INFO = -7
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -8
ELSE IF( ( DISCR .AND. ( ALPHA.LT.ZERO .OR. ALPHA.GT.ONE ) ) .OR.
$ ( .NOT.DISCR .AND. ALPHA.GT.ZERO ) ) THEN
INFO = -9
ELSE IF( BETA.LT.ZERO ) THEN
INFO = -10
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -16
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -18
ELSE IF( TOL1.GE.ONE ) THEN
INFO = -21
ELSE IF( ( TOL2.GT.ZERO .AND. .NOT.FIXORD .AND. TOL2.GT.TOL1 )
$ .OR. TOL2.GE.ONE ) THEN
INFO = -22
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -25
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09HD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 .OR.
$ ( BTA .AND. FIXORD .AND. NR.EQ.0 ) ) THEN
NR = 0
NS = 0
IWORK(1) = 0
DWORK(1) = TWO
DWORK(2) = ONE
RETURN
END IF
C
IF( LEQUIL ) THEN
C
C Scale simultaneously the matrices A, B and C:
C A <- inv(D)*A*D, B <- inv(D)*B and C <- C*D, where D is a
C diagonal matrix.
C Workspace: N.
C
MAXRED = C100
CALL TB01ID( 'All', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
$ DWORK, INFO )
END IF
C
C Allocate working storage.
C
NN = N*N
KU = 1
KWR = KU + NN
KWI = KWR + N
KW = KWI + N
LWR = LDWORK - KW + 1
C
C Reduce A to a block-diagonal real Schur form, with the
C ALPHA-unstable part in the leading diagonal position, using a
C non-orthogonal similarity transformation A <- inv(T)*A*T and
C apply the transformation to B and C: B <- inv(T)*B and C <- C*T.
C
C Workspace needed: N*(N+2);
C Additional workspace: need 3*N;
C prefer larger.
C
CALL TB01KD( DICO, 'Unstable', 'General', N, M, P, ALPHA, A, LDA,
$ B, LDB, C, LDC, NU, DWORK(KU), N, DWORK(KWR),
$ DWORK(KWI), DWORK(KW), LWR, IERR )
C
IF( IERR.NE.0 ) THEN
IF( IERR.NE.3 ) THEN
INFO = 1
ELSE
INFO = 8
END IF
RETURN
END IF
C
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
IWARNL = 0
NS = N - NU
IF( FIXORD ) THEN
NRA = MAX( 0, NR-NU )
IF( NR.LT.NU )
$ IWARNL = 3
ELSE
NRA = 0
END IF
C
C Finish if the system is completely unstable.
C
IF( NS.EQ.0 ) THEN
NR = NU
IWORK(1) = NS
DWORK(1) = WRKOPT
DWORK(2) = ONE
RETURN
END IF
C
NU1 = NU + 1
C
C Allocate working storage.
C
N2 = N + N
KB = 1
KD = KB + N*MB
KT = KD + P*MB
KTI = KT + N*N
KW = KTI + N*N
C
C Form [B 0] and [D BETA*I].
C
CALL DLACPY( 'F', NS, M, B(NU1,1), LDB, DWORK(KB), N )
CALL DLACPY( 'F', P, M, D, LDD, DWORK(KD), P )
IF( BETA.GT.ZERO ) THEN
CALL DLASET( 'F', NS, P, ZERO, ZERO, DWORK(KB+N*M), N )
CALL DLASET( 'F', P, P, ZERO, BETA, DWORK(KD+P*M), P )
END IF
C
C For discrete-time case, apply the discrete-to-continuous bilinear
C transformation to the stable part.
C
IF( DISCR ) THEN
C
C Real workspace: need N, prefer larger;
C Integer workspace: need N.
C
CALL AB04MD( 'Discrete', NS, MB, P, ONE, ONE, A(NU1,NU1), LDA,
$ DWORK(KB), N, C(1,NU1), LDC, DWORK(KD), P,
$ IWORK, DWORK(KT), LDWORK-KT+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KT) ) + KT - 1 )
END IF
C
C Compute in DWORK(KTI) and DWORK(KT) the Cholesky factors S and R
C of the controllability and observability Grammians, respectively.
C Real workspace: need 2*N*N + MB*(N+P)+
C MAX( 2, N*(MAX(N,MB,P)+5),
C 2*N*P+MAX(P*(MB+2), 10*N*(N+1) ) );
C prefer larger.
C Integer workspace: need 2*N.
C
CALL AB09HY( NS, MB, P, A(NU1,NU1), LDA, DWORK(KB), N,
$ C(1,NU1), LDC, DWORK(KD), P, SCALEC, SCALEO,
$ DWORK(KTI), N, DWORK(KT), N, IWORK, DWORK(KW),
$ LDWORK-KW+1, BWORK, INFO )
IF( INFO.NE.0 )
$ RETURN
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
RICOND = DWORK(KW+1)
C
C Compute a BTA or SPA of the stable part.
C Real workspace: need 2*N*N + MB*(N+P)+
C MAX( 1, 2*N*N+5*N, N*MAX(MB,P) ).
C
EPSM = DLAMCH( 'Epsilon' )
CALL AB09IX( 'C', JOB, 'Schur', ORDSEL, NS, MB, P, NRA, SCALEC,
$ SCALEO, A(NU1,NU1), LDA, DWORK(KB), N, C(1,NU1), LDC,
$ DWORK(KD), P, DWORK(KTI), N, DWORK(KT), N, NMR, HSV,
$ MAX( TOL1, N*EPSM ), TOL2, IWORK, DWORK(KW),
$ LDWORK-KW+1, IWARN, IERR )
IWARN = MAX( IWARN, IWARNL )
IF( IERR.NE.0 ) THEN
INFO = 7
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Check if the resulting order is greater than the number of
C unstable zeros (this check is implicit by looking at Hankel
C singular values equal to 1).
C
IF( NRA.LT.NS .AND. HSV(NRA+1).GE.ONE-EPSM**TWOBY3 ) THEN
INFO = 9
RETURN
END IF
C
C For discrete-time case, apply the continuous-to-discrete
C bilinear transformation.
C
IF( DISCR ) THEN
CALL AB04MD( 'Continuous', NRA, MB, P, ONE, ONE,
$ A(NU1,NU1), LDA, DWORK(KB), N, C(1,NU1), LDC,
$ DWORK(KD), P, IWORK, DWORK, LDWORK, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
END IF
C
CALL DLACPY( 'F', NRA, M, DWORK(KB), N, B(NU1,1), LDB )
CALL DLACPY( 'F', P, M, DWORK(KD), P, D, LDD )
C
NR = NRA + NU
C
IWORK(1) = NMR
DWORK(1) = WRKOPT
DWORK(2) = RICOND
C
RETURN
C *** Last line of AB09HD ***
END