dynare/mex/sources/libslicot/AB09AX.f

565 lines
20 KiB
Fortran

SUBROUTINE AB09AX( DICO, JOB, ORDSEL, N, M, P, NR, A, LDA, B, LDB,
$ C, LDC, HSV, T, LDT, TI, LDTI, TOL, IWORK,
$ DWORK, LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr) for a stable original
C state-space representation (A,B,C) by using either the square-root
C or the balancing-free square-root Balance & Truncate model
C reduction method. The state dynamics matrix A of the original
C system is an upper quasi-triangular matrix in real Schur canonical
C form. The matrices of the reduced order system are computed using
C the truncation formulas:
C
C Ar = TI * A * T , Br = TI * B , Cr = C * T .
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOB CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root Balance & Truncate method;
C = 'N': use the balancing-free square-root
C Balance & Truncate method.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation, i.e.
C the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of the
C resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. NR is set as follows:
C if ORDSEL = 'F', NR is equal to MIN(NR,NMIN), where NR
C is the desired order on entry and NMIN is the order of a
C minimal realization of the given system; NMIN is
C determined as the number of Hankel singular values greater
C than N*EPS*HNORM(A,B,C), where EPS is the machine
C precision (see LAPACK Library Routine DLAMCH) and
C HNORM(A,B,C) is the Hankel norm of the system (computed
C in HSV(1));
C if ORDSEL = 'A', NR is equal to the number of Hankel
C singular values greater than MAX(TOL,N*EPS*HNORM(A,B,C)).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A in a real Schur
C canonical form.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the
C reduced order system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, it contains the Hankel singular values of
C the original system ordered decreasingly. HSV(1) is the
C Hankel norm of the system.
C
C T (output) DOUBLE PRECISION array, dimension (LDT,N)
C If INFO = 0 and NR > 0, the leading N-by-NR part of this
C array contains the right truncation matrix T.
C
C LDT INTEGER
C The leading dimension of array T. LDT >= MAX(1,N).
C
C TI (output) DOUBLE PRECISION array, dimension (LDTI,N)
C If INFO = 0 and NR > 0, the leading NR-by-N part of this
C array contains the left truncation matrix TI.
C
C LDTI INTEGER
C The leading dimension of array TI. LDTI >= MAX(1,N).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If ORDSEL = 'A', TOL contains the tolerance for
C determining the order of reduced system.
C For model reduction, the recommended value is
C TOL = c*HNORM(A,B,C), where c is a constant in the
C interval [0.00001,0.001], and HNORM(A,B,C) is the
C Hankel-norm of the given system (computed in HSV(1)).
C For computing a minimal realization, the recommended
C value is TOL = N*EPS*HNORM(A,B,C), where EPS is the
C machine precision (see LAPACK Library Routine DLAMCH).
C This value is used by default if TOL <= 0 on entry.
C If ORDSEL = 'F', the value of TOL is ignored.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK = 0, if JOB = 'B', or
C LIWORK = N, if JOB = 'N'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,N*(MAX(N,M,P)+5) + N*(N+1)/2).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than the order of a minimal realization of the
C given system. In this case, the resulting NR is
C set automatically to a value corresponding to the
C order of a minimal realization of the system.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the state matrix A is not stable (if DICO = 'C')
C or not convergent (if DICO = 'D');
C = 2: the computation of Hankel singular values failed.
C
C METHOD
C
C Let be the stable linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09AX determines for
C the given system (1), the matrices of a reduced NR order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) (2)
C
C such that
C
C HSV(NR) <= INFNORM(G-Gr) <= 2*[HSV(NR+1) + ... + HSV(N)],
C
C where G and Gr are transfer-function matrices of the systems
C (A,B,C) and (Ar,Br,Cr), respectively, and INFNORM(G) is the
C infinity-norm of G.
C
C If JOB = 'B', the square-root Balance & Truncate method of [1]
C is used and, for DICO = 'C', the resulting model is balanced.
C By setting TOL <= 0, the routine can be used to compute balanced
C minimal state-space realizations of stable systems.
C
C If JOB = 'N', the balancing-free square-root version of the
C Balance & Truncate method [2] is used.
C By setting TOL <= 0, the routine can be used to compute minimal
C state-space realizations of stable systems.
C
C REFERENCES
C
C [1] Tombs M.S. and Postlethwaite I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C [2] Varga A.
C Efficient minimal realization procedure based on balancing.
C Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
C A. El Moudui, P. Borne, S. G. Tzafestas (Eds.),
C Vol. 2, pp. 42-46.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root or
C balancing-free square-root techniques.
C 3
C The algorithms require less than 30N floating point operations.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, March 1998.
C Based on the RASP routines SRBT1 and SRBFT1.
C
C REVISIONS
C
C May 2, 1998.
C November 11, 1998, V. Sima, Research Institute for Informatics,
C Bucharest.
C December 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C February 14, 1999, A. Varga, German Aerospace Center.
C February 22, 1999, V. Sima, Research Institute for Informatics.
C February 27, 2000, V. Sima, Research Institute for Informatics.
C
C KEYWORDS
C
C Balancing, minimal state-space representation, model reduction,
C multivariable system, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDT, LDTI, LDWORK,
$ M, N, NR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*),
$ T(LDT,*), TI(LDTI,*)
C .. Local Scalars ..
LOGICAL BAL, DISCR, FIXORD, PACKED
INTEGER IERR, IJ, J, K, KTAU, KU, KV, KW, LDW, WRKOPT
DOUBLE PRECISION ATOL, RTOL, SCALEC, SCALEO, TEMP
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DGEMM, DGEMV, DGEQRF, DGETRF, DGETRS, DLACPY,
$ DORGQR, DSCAL, DTPMV, DTRMM, DTRMV, MA02AD,
$ MA02DD, MB03UD, SB03OU, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
BAL = LSAME( JOB, 'B' )
FIXORD = LSAME( ORDSEL, 'F' )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( BAL .OR. LSAME( JOB, 'N') ) ) THEN
INFO = -2
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( P.LT.0 ) THEN
INFO = -6
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -13
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDTI.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDWORK.LT.MAX( 1, N*( MAX( N, M, P ) + 5 ) +
$ ( N*( N + 1 ) )/2 ) ) THEN
INFO = -22
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09AX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 .OR. ( FIXORD .AND. NR.EQ.0 ) ) THEN
NR = 0
DWORK(1) = ONE
RETURN
END IF
C
RTOL = DBLE( N )*DLAMCH( 'Epsilon' )
C
C Allocate N*MAX(N,M,P) and N working storage for the matrices U
C and TAU, respectively.
C
KU = 1
KTAU = KU + N*MAX( N, M, P )
KW = KTAU + N
LDW = LDWORK - KW + 1
C
C Copy B in U.
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), N )
C
C If DISCR = .FALSE., solve for Su the Lyapunov equation
C 2
C A*(Su*Su') + (Su*Su')*A' + scalec *B*B' = 0 .
C
C If DISCR = .TRUE., solve for Su the Lyapunov equation
C 2
C A*(Su*Su')*A' + scalec *B*B' = Su*Su' .
C
C Workspace: need N*(MAX(N,M,P) + 5);
C prefer larger.
C
CALL SB03OU( DISCR, .TRUE., N, M, A, LDA, DWORK(KU), N,
$ DWORK(KTAU), TI, LDTI, SCALEC, DWORK(KW), LDW, IERR )
IF( IERR.NE.0 ) THEN
INFO = 1
RETURN
ENDIF
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C Copy C in U.
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KU), P )
C
C If DISCR = .FALSE., solve for Ru the Lyapunov equation
C 2
C A'*(Ru'*Ru) + (Ru'*Ru)*A + scaleo * C'*C = 0 .
C
C If DISCR = .TRUE., solve for Ru the Lyapunov equation
C 2
C A'*(Ru'*Ru)*A + scaleo * C'*C = Ru'*Ru .
C
C Workspace: need N*(MAX(N,M,P) + 5);
C prefer larger.
C
CALL SB03OU( DISCR, .FALSE., N, P, A, LDA, DWORK(KU), P,
$ DWORK(KTAU), T, LDT, SCALEO, DWORK(KW), LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Allocate N*(N+1)/2 (or, if possible, N*N) working storage for the
C matrix V, a packed (or unpacked) copy of Su, and save Su in V.
C (The locations for TAU are reused here.)
C
KV = KTAU
IF ( LDWORK-KV+1.LT.N*( N + 5 ) ) THEN
PACKED = .TRUE.
CALL MA02DD( 'Pack', 'Upper', N, TI, LDTI, DWORK(KV) )
KW = KV + ( N*( N + 1 ) )/2
ELSE
PACKED = .FALSE.
CALL DLACPY( 'Upper', N, N, TI, LDTI, DWORK(KV), N )
KW = KV + N*N
END IF
C | x x |
C Compute Ru*Su in the form | 0 x | in TI.
C
DO 10 J = 1, N
CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', J, T, LDT,
$ TI(1,J), 1 )
10 CONTINUE
C
C Compute the singular value decomposition Ru*Su = V*S*UT
C of the upper triangular matrix Ru*Su, with UT in TI and V in U.
C
C Workspace: need N*MAX(N,M,P) + N*(N+1)/2 + 5*N;
C prefer larger.
C
CALL MB03UD( 'Vectors', 'Vectors', N, TI, LDTI, DWORK(KU), N, HSV,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 2
RETURN
ENDIF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Scale singular values.
C
CALL DSCAL( N, ONE / SCALEC / SCALEO, HSV, 1 )
C
C Partition S, U and V conformally as:
C
C S = diag(S1,S2), U = [U1,U2] (U' in TI) and V = [V1,V2] (in U).
C
C Compute the order of reduced system, as the order of S1.
C
ATOL = RTOL*HSV(1)
IF( FIXORD ) THEN
IF( NR.GT.0 ) THEN
IF( HSV(NR).LE.ATOL ) THEN
NR = 0
IWARN = 1
FIXORD = .FALSE.
ENDIF
ENDIF
ELSE
ATOL = MAX( TOL, ATOL )
NR = 0
ENDIF
IF( .NOT.FIXORD ) THEN
DO 20 J = 1, N
IF( HSV(J).LE.ATOL ) GO TO 30
NR = NR + 1
20 CONTINUE
30 CONTINUE
ENDIF
C
IF( NR.EQ.0 ) THEN
DWORK(1) = WRKOPT
RETURN
END IF
C
C Compute the truncation matrices.
C
C Compute TI' = Ru'*V1 in U.
C
CALL DTRMM( 'Left', 'Upper', 'Transpose', 'NonUnit', N, NR, ONE,
$ T, LDT, DWORK(KU), N )
C
C Compute T = Su*U1 (with Su packed, if not enough workspace).
C
CALL MA02AD( 'Full', NR, N, TI, LDTI, T, LDT )
IF ( PACKED ) THEN
DO 40 J = 1, NR
CALL DTPMV( 'Upper', 'NoTranspose', 'NonUnit', N, DWORK(KV),
$ T(1,J), 1 )
40 CONTINUE
ELSE
CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', N, NR,
$ ONE, DWORK(KV), N, T, LDT )
END IF
C
IF( BAL ) THEN
IJ = KU
C
C Square-Root B & T method.
C
C Compute the truncation matrices for balancing
C -1/2 -1/2
C T*S1 and TI'*S1
C
DO 50 J = 1, NR
TEMP = ONE/SQRT( HSV(J) )
CALL DSCAL( N, TEMP, T(1,J), 1 )
CALL DSCAL( N, TEMP, DWORK(IJ), 1 )
IJ = IJ + N
50 CONTINUE
ELSE
C
C Balancing-Free B & T method.
C
C Compute orthogonal bases for the images of matrices T and TI'.
C
C Workspace: need N*MAX(N,M,P) + 2*NR;
C prefer N*MAX(N,M,P) + NR*(NB+1)
C (NB determined by ILAENV for DGEQRF).
C
KW = KTAU + NR
LDW = LDWORK - KW + 1
CALL DGEQRF( N, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW, IERR )
CALL DORGQR( N, NR, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
CALL DGEQRF( N, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
CALL DORGQR( N, NR, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW),
$ LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
END IF
C
C Transpose TI' to obtain TI.
C
CALL MA02AD( 'Full', N, NR, DWORK(KU), N, TI, LDTI )
C
IF( .NOT.BAL ) THEN
C -1
C Compute (TI*T) *TI in TI.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', NR, NR, N, ONE, TI,
$ LDTI, T, LDT, ZERO, DWORK(KU), N )
CALL DGETRF( NR, NR, DWORK(KU), N, IWORK, IERR )
CALL DGETRS( 'NoTranspose', NR, N, DWORK(KU), N, IWORK, TI,
$ LDTI, IERR )
END IF
C
C Compute TI*A*T (A is in RSF).
C
IJ = KU
DO 60 J = 1, N
K = MIN( J+1, N )
CALL DGEMV( 'NoTranspose', NR, K, ONE, TI, LDTI, A(1,J), 1,
$ ZERO, DWORK(IJ), 1 )
IJ = IJ + N
60 CONTINUE
CALL DGEMM( 'NoTranspose', 'NoTranspose', NR, NR, N, ONE,
$ DWORK(KU), N, T, LDT, ZERO, A, LDA )
C
C Compute TI*B and C*T.
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), N )
CALL DGEMM( 'NoTranspose', 'NoTranspose', NR, M, N, ONE, TI, LDTI,
$ DWORK(KU), N, ZERO, B, LDB )
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KU), P )
CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NR, N, ONE,
$ DWORK(KU), P, T, LDT, ZERO, C, LDC )
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of AB09AX ***
END