dynare/dynare++/tl/cc/sparse_tensor.cc

243 lines
7.0 KiB
C++

// Copyright 2004, Ondra Kamenik
#include "sparse_tensor.hh"
#include "fs_tensor.hh"
#include "tl_exception.hh"
#include <iostream>
#include <iomanip>
#include <cmath>
/* This is straightforward. Before we insert anything, we do a few
checks. Then we reset |first_nz_row| and |last_nz_row| if necessary. */
void
SparseTensor::insert(IntSequence key, int r, double c)
{
TL_RAISE_IF(r < 0 || r >= nr,
"Row number out of dimension of tensor in SparseTensor::insert");
TL_RAISE_IF(key.size() != dimen(),
"Wrong length of key in SparseTensor::insert");
TL_RAISE_IF(!std::isfinite(c),
"Insertion of non-finite value in SparseTensor::insert");
auto first_pos = m.lower_bound(key);
// check that pair |key| and |r| is unique
auto last_pos = m.upper_bound(key);
for (auto it = first_pos; it != last_pos; ++it)
TL_RAISE_IF(it->second.first == r, "Duplicate <key, r> insertion in SparseTensor::insert");
m.emplace_hint(first_pos, std::move(key), std::make_pair(r, c));
if (first_nz_row > r)
first_nz_row = r;
if (last_nz_row < r)
last_nz_row = r;
}
/* This returns true if all items are finite (not Nan nor Inf). */
bool
SparseTensor::isFinite() const
{
bool res = true;
auto run = m.begin();
while (res && run != m.end())
{
if (!std::isfinite(run->second.second))
res = false;
++run;
}
return res;
}
/* This returns a ratio of a number of non-zero columns in folded
tensor to the total number of columns. */
double
SparseTensor::getFoldIndexFillFactor() const
{
int cnt = 0;
auto start_col = m.begin();
while (start_col != m.end())
{
cnt++;
const IntSequence &key = start_col->first;
start_col = m.upper_bound(key);
}
return static_cast<double>(cnt)/ncols();
}
/* This returns a ratio of a number of non-zero columns in unfolded
tensor to the total number of columns. */
double
SparseTensor::getUnfoldIndexFillFactor() const
{
int cnt = 0;
auto start_col = m.begin();
while (start_col != m.end())
{
const IntSequence &key = start_col->first;
cnt += key.getSymmetry().noverseq();
start_col = m.upper_bound(key);
}
return static_cast<double>(cnt)/ncols();
}
/* This prints the fill factor and all items. */
void
SparseTensor::print() const
{
std::cout << "Fill: "
<< std::fixed << std::setprecision(2) << 100*getFillFactor()
<< std::setprecision(6) << std::defaultfloat << " %\n";
auto start_col = m.begin();
while (start_col != m.end())
{
const IntSequence &key = start_col->first;
std::cout << "Column: ";
key.print();
auto end_col = m.upper_bound(key);
int cnt = 1;
for (auto run = start_col; run != end_col; ++run, cnt++)
{
if (cnt % 7 == 0)
std::cout << "\n";
std::cout << run->second.first << '(' << run->second.second << ") ";
}
std::cout << "\n";
start_col = end_col;
}
}
FSSparseTensor::FSSparseTensor(int d, int nvar, int r)
: SparseTensor(d, r, FFSTensor::calcMaxOffset(nvar, d)),
nv(nvar), sym{d}
{
}
void
FSSparseTensor::insert(IntSequence key, int r, double c)
{
TL_RAISE_IF(!key.isSorted(),
"Key is not sorted in FSSparseTensor::insert");
TL_RAISE_IF(key[key.size()-1] >= nv || key[0] < 0,
"Wrong value of the key in FSSparseTensor::insert");
SparseTensor::insert(std::move(key), r, c);
}
/* We go through the tensor |t| which is supposed to have single
column. If the item of |t| is nonzero, we make a key by sorting the
index, and then we go through all items having the same key (it is its
column), obtain the row number and the element, and do the
multiplication.
The test for non-zero is |a != 0.0|, since there will be items which
are exact zeros.
I have also tried to make the loop through the sparse tensor outer, and
find index of tensor |t| within the loop. Surprisingly, it is little
slower (for monomial tests with probability of zeros equal 0.3). But
everything depends how filled is the sparse tensor. */
void
FSSparseTensor::multColumnAndAdd(const Tensor &t, Vector &v) const
{
// check compatibility of input parameters
TL_RAISE_IF(v.length() != nrows(),
"Wrong size of output vector in FSSparseTensor::multColumnAndAdd");
TL_RAISE_IF(t.dimen() != dimen(),
"Wrong dimension of tensor in FSSparseTensor::multColumnAndAdd");
TL_RAISE_IF(t.ncols() != 1,
"The input tensor is not single-column in FSSparseTensor::multColumnAndAdd");
for (Tensor::index it = t.begin(); it != t.end(); ++it)
{
int ind = *it;
double a = t.get(ind, 0);
if (a != 0.0)
{
IntSequence key(it.getCoor());
key.sort();
// check that |key| is within the range
TL_RAISE_IF(key[0] < 0 || key[key.size()-1] >= nv,
"Wrong coordinates of index in FSSparseTensor::multColumnAndAdd");
auto first_pos = m.lower_bound(key);
auto last_pos = m.upper_bound(key);
for (auto cit = first_pos; cit != last_pos; ++cit)
{
int r = cit->second.first;
double c = cit->second.second;
v[r] += c * a;
}
}
}
}
void
FSSparseTensor::print() const
{
std::cout << "FS Sparse tensor: dim=" << dim << ", nv=" << nv << ", (" << nr << 'x' << nc << ")\n";
SparseTensor::print();
}
// |GSSparseTensor| slicing constructor
/* This is the same as |@<|FGSTensor| slicing from |FSSparseTensor|@>|. */
GSSparseTensor::GSSparseTensor(const FSSparseTensor &t, const IntSequence &ss,
const IntSequence &coor, TensorDimens td)
: SparseTensor(td.dimen(), t.nrows(), td.calcFoldMaxOffset()),
tdims(std::move(td))
{
// set |lb| and |ub| to lower and upper bounds of slice indices
/* This is the same as |@<set |lb| and |ub| to lower and upper bounds
of indices@>| in {\tt gs\_tensor.cpp}, see that file for details. */
IntSequence s_offsets(ss.size(), 0);
for (int i = 1; i < ss.size(); i++)
s_offsets[i] = s_offsets[i-1] + ss[i-1];
IntSequence lb(coor.size());
IntSequence ub(coor.size());
for (int i = 0; i < coor.size(); i++)
{
lb[i] = s_offsets[coor[i]];
ub[i] = s_offsets[coor[i]] + ss[coor[i]] - 1;
}
auto lbi = t.getMap().lower_bound(lb);
auto ubi = t.getMap().upper_bound(ub);
for (auto run = lbi; run != ubi; ++run)
{
if (lb.lessEq(run->first) && run->first.lessEq(ub))
{
IntSequence c(run->first);
c.add(-1, lb);
insert(c, run->second.first, run->second.second);
}
}
}
void
GSSparseTensor::insert(IntSequence s, int r, double c)
{
TL_RAISE_IF(!s.less(tdims.getNVX()),
"Wrong coordinates of index in GSSparseTensor::insert");
SparseTensor::insert(std::move(s), r, c);
}
void
GSSparseTensor::print() const
{
std::cout << "GS Sparse tensor: (" << nr << 'x' << nc << ")\nSymmetry: ";
tdims.getSym().print();
std::cout << "NVS: ";
tdims.getNVS().print();
SparseTensor::print();
}