dynare/matlab/realtime_shock_decomposition.m

309 lines
12 KiB
Matlab

function oo_ = realtime_shock_decomposition(M_,oo_,options_,varlist,bayestopt_,estim_params_)
% function oo_ = realtime_shock_decomposition(M_,oo_,options_,varlist,bayestopt_,estim_params_)
% Computes shocks contribution to a simulated trajectory. The fields set are
% oo_.realtime_shock_decomposition, oo_.conditional_shock_decomposition and oo_.realtime_forecast_shock_decomposition.
% Subfields are arrays n_var by nshock+2 by nperiods. The
% first nshock columns store the respective shock contributions, column n+1
% stores the role of the initial conditions, while column n+2 stores the
% value of the smoothed variables. Both the variables and shocks are stored
% in the order of declaration, i.e. M_.endo_names and M_.exo_names, respectively.
%
% INPUTS
% M_: [structure] Definition of the model
% oo_: [structure] Storage of results
% options_: [structure] Options
% varlist: [char] List of variables
% bayestopt_: [structure] describing the priors
% estim_params_: [structure] characterizing parameters to be estimated
%
% OUTPUTS
% oo_: [structure] Storage of results
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2009-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% indices of endogenous variables
if isempty(varlist)
varlist = M_.endo_names(1:M_.orig_endo_nbr);
end
[i_var, nvar, index_uniques] = varlist_indices(varlist,M_.endo_names);
varlist = varlist(index_uniques);
% number of variables
endo_nbr = M_.endo_nbr;
% number of shocks
nshocks = M_.exo_nbr;
% parameter set
parameter_set = options_.parameter_set;
if isempty(parameter_set)
if isfield(oo_,'posterior_mean')
parameter_set = 'posterior_mean';
elseif isfield(oo_,'mle_mode')
parameter_set = 'mle_mode';
elseif isfield(oo_,'posterior')
parameter_set = 'posterior_mode';
else
error(['realtime_shock_decomposition: option parameter_set is not specified ' ...
'and posterior mode is not available'])
end
end
presample = max(1,options_.presample);
if isfield(options_.shock_decomp,'presample')
presample = max(presample,options_.shock_decomp.presample);
end
% forecast_=0;
forecast_ = options_.shock_decomp.forecast;
forecast_params=0;
if forecast_ && isfield(options_.shock_decomp,'forecast_params')
forecast_params = options_.shock_decomp.forecast_params;
end
fast_realtime = 0;
if isfield(options_.shock_decomp,'fast_realtime')
fast_realtime = options_.shock_decomp.fast_realtime;
end
% save_realtime=0;
save_realtime = options_.shock_decomp.save_realtime;
% array of time points in the range options_.presample+1:options_.nobs
zreal = zeros(endo_nbr,nshocks+2,options_.nobs+forecast_);
zcond = zeros(endo_nbr,nshocks+2,options_.nobs);
options_.selected_variables_only = 0; %make sure all variables are stored
options_.plot_priors=0;
init=1;
nobs = options_.nobs;
if forecast_ && any(forecast_params)
M1=M_;
M1.params = forecast_params;
[~,~,~,~,~,~,oo1] = dynare_resolve(M1,options_,oo_);
end
if fast_realtime
skipline()
skipline()
running_text = 'Fast realtime shock decomposition ';
newString=sprintf(running_text);
fprintf(['%s'],newString);
options_.nobs=fast_realtime;
[oo0,M_,~,~,Smoothed_Variables_deviation_from_mean0] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_);
gend0 = size(oo0.SmoothedShocks.(M_.exo_names{1}),1);
prctdone=0.5;
if isoctave
printf([running_text,' %3.f%% done\r'], prctdone*100);
else
s0=repmat('\b',1,length(newString)+1);
newString=sprintf([running_text,' %3.1f%% done'], prctdone*100);
fprintf([s0,'%s'],newString);
end
options_.nobs=nobs;
[oo2,M_,~,~,Smoothed_Variables_deviation_from_mean2] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_);
gend2 = size(oo2.SmoothedShocks.(M_.exo_names{1}),1);
prctdone=1;
if isoctave
printf([running_text,' %3.f%% done\r'], prctdone*100);
else
s0=repmat('\b',1,length(newString)+1);
newString=sprintf([running_text,' %3.1f%% done'], prctdone*100);
fprintf([s0,'%s'],newString);
end
end
skipline()
skipline()
running_text = 'Realtime shock decomposition ';
newString=sprintf(running_text);
fprintf(['%s'],newString);
for j=presample+1:nobs
% evalin('base',['options_.nobs=' int2str(j) ';'])
options_.nobs=j;
if ~fast_realtime
[oo,M_,~,~,Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_);
gend = size(oo.SmoothedShocks.(M_.exo_names{1}),1);
else
gend = gend0+j-fast_realtime;
if j>fast_realtime
oo=oo2;
Smoothed_Variables_deviation_from_mean = Smoothed_Variables_deviation_from_mean2(:,1:gend);
else
oo=oo0;
Smoothed_Variables_deviation_from_mean = Smoothed_Variables_deviation_from_mean0(:,1:gend);
end
end
% reduced form
dr = oo.dr;
% data reordering
order_var = dr.order_var;
inv_order_var = dr.inv_order_var;
% coefficients
A = dr.ghx;
B = dr.ghu;
if forecast_
if any(forecast_params)
Af = oo1.dr.ghx;
Bf = oo1.dr.ghu;
else
Af = A;
Bf = B;
end
end
% initialization
epsilon=NaN(nshocks,gend);
for i = 1:nshocks
epsilon(i,:) = oo.SmoothedShocks.(M_.exo_names{i})(1:gend);
end
epsilon=[epsilon zeros(nshocks,forecast_)];
z = zeros(endo_nbr,nshocks+2,gend+forecast_);
z(:,end,1:gend) = Smoothed_Variables_deviation_from_mean;
maximum_lag = M_.maximum_lag;
k2 = dr.kstate(find(dr.kstate(:,2) <= maximum_lag+1),[1 2]);
i_state = order_var(k2(:,1))+(min(i,maximum_lag)+1-k2(:,2))*M_.endo_nbr;
for i=1:gend+forecast_
if i > 1 && i <= maximum_lag+1
lags = min(i-1,maximum_lag):-1:1;
end
if i > 1
tempx = permute(z(:,1:nshocks,lags),[1 3 2]);
m = min(i-1,maximum_lag);
tempx = [reshape(tempx,endo_nbr*m,nshocks); zeros(endo_nbr*(maximum_lag-i+1),nshocks)];
if i > gend
z(:,nshocks+2,i) = Af(inv_order_var,:)*z(i_state,nshocks+2,lags);
% z(:,nshocks+2,i) = A(inv_order_var,:)*permute(z(i_state,nshocks+2,lags),[1 3 2]);
z(:,1:nshocks,i) = Af(inv_order_var,:)*tempx(i_state,:);
else
z(:,1:nshocks,i) = A(inv_order_var,:)*tempx(i_state,:);
end
lags = lags+1;
z(:,1:nshocks,i) = z(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
end
% z(:,1:nshocks,i) = z(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
z(:,nshocks+1,i) = z(:,nshocks+2,i) - sum(z(:,1:nshocks,i),2);
end
%% conditional shock decomp 1 step ahead
z1 = zeros(endo_nbr,nshocks+2);
z1(:,end) = Smoothed_Variables_deviation_from_mean(:,gend);
for i=gend
z1(:,1:nshocks) = z1(:,1:nshocks) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
z1(:,nshocks+1) = z1(:,nshocks+2) - sum(z1(:,1:nshocks),2);
end
%%
%% conditional shock decomp k step ahead
if forecast_ && forecast_<j
zn = zeros(endo_nbr,nshocks+2,forecast_+1);
zn(:,end,1:forecast_+1) = Smoothed_Variables_deviation_from_mean(:,gend-forecast_:gend);
for i=1:forecast_+1
if i > 1 && i <= maximum_lag+1
lags = min(i-1,maximum_lag):-1:1;
end
if i > 1
tempx = permute(zn(:,1:nshocks,lags),[1 3 2]);
m = min(i-1,maximum_lag);
tempx = [reshape(tempx,endo_nbr*m,nshocks); zeros(endo_nbr*(maximum_lag-i+1-1),nshocks)];
zn(:,1:nshocks,i) = A(inv_order_var,:)*tempx(i_state,:);
lags = lags+1;
zn(:,1:nshocks,i) = zn(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i+gend-forecast_-1)',endo_nbr,1);
end
% zn(:,1:nshocks,i) = zn(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i+gend-forecast_-1)',endo_nbr,1);
zn(:,nshocks+1,i) = zn(:,nshocks+2,i) - sum(zn(:,1:nshocks,i),2);
end
oo_.conditional_shock_decomposition.(['time_' int2str(j-forecast_)])=zn;
end
%%
if init
zreal(:,:,1:j) = z(:,:,1:j);
else
zreal(:,:,j) = z(:,:,gend);
end
zcond(:,:,j) = z1;
if ismember(j,save_realtime)
oo_.realtime_shock_decomposition.(['time_' int2str(j)])=z;
end
if forecast_
zfrcst(:,:,j+1) = z(:,:,gend+1);
oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j)])=z(:,:,gend:end);
if j>forecast_+presample
%% realtime conditional shock decomp k step ahead
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)]) = ...
zreal(:,:,j-forecast_:j) - ...
oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j-forecast_)]);
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end-1,:) = ...
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end-1,:) + ...
oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end,:);
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end,:) = ...
zreal(:,end,j-forecast_:j);
if j==nobs
for my_forecast_=(forecast_-1):-1:1
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)]) = ...
zreal(:,:,j-my_forecast_:j) - ...
oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,:,1:my_forecast_+1);
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end-1,:) = ...
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end-1,:) + ...
oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end,1:my_forecast_+1);
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end,:) = ...
zreal(:,end,j-my_forecast_:j);
end
end
end
end
prctdone=(j-presample)/(nobs-presample);
if isoctave
printf([running_text,' %3.f%% done\r'], prctdone*100);
else
s0=repmat('\b',1,length(newString));
newString=sprintf([running_text,' %3.1f%% done'], prctdone*100);
fprintf([s0,'%s'],newString);
end
init=0;
end
oo_.realtime_shock_decomposition.pool = zreal;
oo_.conditional_shock_decomposition.pool = zcond;
if forecast_
oo_.realtime_forecast_shock_decomposition.pool = zfrcst;
end
skipline()