dynare/matlab/perfect-foresight-models/perfect_foresight_solver.m

217 lines
7.8 KiB
Matlab

function perfect_foresight_solver()
% Computes deterministic simulations
%
% INPUTS
% None
%
% OUTPUTS
% none
%
% ALGORITHM
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 1996-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ oo_
check_input_arguments(options_, M_, oo_);
if isempty(options_.scalv) || options_.scalv == 0
options_.scalv = oo_.steady_state;
end
options_.scalv= 1;
if options_.debug
model_static = str2func([M_.fname,'.static']);
for ii=1:size(oo_.exo_simul,1)
[residual(:,ii)] = model_static(oo_.steady_state, oo_.exo_simul(ii,:),M_.params);
end
problematic_periods=find(any(isinf(residual)) | any(isnan(residual)))-M_.maximum_endo_lag;
if ~isempty(problematic_periods)
period_string=num2str(problematic_periods(1));
for ii=2:length(problematic_periods)
period_string=[period_string, ', ', num2str(problematic_periods(ii))];
end
fprintf('\n\nWARNING: Value for the exogenous variable(s) in period(s) %s inconsistent with the static model.\n',period_string);
fprintf('WARNING: Check for division by 0.\n')
end
end
initperiods = 1:M_.maximum_lag;
lastperiods = (M_.maximum_lag+options_.periods+1):(M_.maximum_lag+options_.periods+M_.maximum_lead);
oo_ = perfect_foresight_solver_core(M_,options_,oo_);
% If simulation failed try homotopy.
if ~oo_.deterministic_simulation.status && ~options_.no_homotopy
skipline()
disp('Simulation of the perfect foresight model failed!')
disp('Switching to a homotopy method...')
skipline()
if ~M_.maximum_lag
disp('Homotopy not implemented for purely forward models!')
disp('Failed to solve the model!')
disp('Return with empty oo_.endo_simul.')
oo_.endo_simul = [];
return
end
if ~M_.maximum_lead
disp('Homotopy not implemented for purely backward models!')
disp('Failed to solve the model!')
disp('Return with empty oo_.endo_simul.')
oo_.endo_simul = [];
return
end
% Disable warnings if homotopy
warning_old_state = warning;
warning off all
% Do not print anything
oldverbositylevel = options_.verbosity;
options_.verbosity = 0;
% Set initial paths for the endogenous and exogenous variables.
endoinit = repmat(oo_.steady_state, 1,M_.maximum_lag+options_.periods+M_.maximum_lead);
exoinit = repmat(oo_.exo_steady_state',M_.maximum_lag+options_.periods+M_.maximum_lead,1);
% Copy the current paths for the exogenous and endogenous variables.
exosim = oo_.exo_simul;
endosim = oo_.endo_simul;
current_weight = 0; % Current weight of target point in convex combination.
step = .5; % Set default step size.
success_counter = 0;
iteration = 0;
fprintf('Iter. \t | Lambda \t | status \t | Max. residual\n')
fprintf('++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
while (step > options_.dynatol.x)
if ~isequal(step,1)
options_.verbosity = 0;
end
iteration = iteration+1;
new_weight = current_weight + step; % Try this weight, and see if it succeeds
if new_weight >= 1
new_weight = 1; % Don't go beyond target point
step = new_weight - current_weight;
end
% Compute convex combination for exo path and initial/terminal endo conditions
% But take care of not overwriting the computed part of oo_.endo_simul
oo_.exo_simul = exosim*new_weight + exoinit*(1-new_weight);
oo_.endo_simul(:,[initperiods, lastperiods]) = new_weight*endosim(:,[initperiods, lastperiods])+(1-new_weight)*endoinit(:,[initperiods, lastperiods]);
% Detect Nans or complex numbers in the solution.
path_with_nans = any(any(isnan(oo_.endo_simul)));
path_with_cplx = any(any(~isreal(oo_.endo_simul)));
if isequal(iteration, 1)
% First iteration, same initial guess as in the first call to perfect_foresight_solver_core routine.
oo_.endo_simul(:,M_.maximum_lag+1:end-M_.maximum_lead) = endoinit(:,1:options_.periods);
elseif path_with_nans || path_with_cplx
% If solver failed with NaNs or complex number, use previous solution as an initial guess.
oo_.endo_simul(:,M_.maximum_lag+1:end-M_.maximum_lead) = saved_endo_simul(:,1+M_.maximum_lag:end-M_.maximum_lead);
end
% Make a copy of the paths.
saved_endo_simul = oo_.endo_simul;
% Solve for the paths of the endogenous variables.
[oo_,me] = perfect_foresight_solver_core(M_,options_,oo_);
if oo_.deterministic_simulation.status == 1
current_weight = new_weight;
if current_weight >= 1
fprintf('%i \t | %1.5f \t | %s \t | %e\n', iteration, new_weight, 'succeeded', me)
break
end
success_counter = success_counter + 1;
if success_counter >= 3
success_counter = 0;
step = step * 2;
end
fprintf('%i \t | %1.5f \t | %s \t | %e\n', iteration, new_weight, 'succeeded', me)
else
% If solver failed, then go back.
oo_.endo_simul = saved_endo_simul;
success_counter = 0;
step = step / 2;
if isreal(me)
fprintf('%i \t | %1.5f \t | %s \t | %e\n', iteration, new_weight, 'failed', me)
else
fprintf('%i \t | %1.5f \t | %s \t | %s\n', iteration, new_weight, 'failed', 'Complex')
end
end
end
fprintf('++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
skipline()
options_.verbosity = oldverbositylevel;
warning(warning_old_state);
end
if ~isreal(oo_.endo_simul(:)) %can only happen without bytecode
y0 = real(oo_.endo_simul(:,1));
yT = real(oo_.endo_simul(:,options_.periods+2));
yy = real(oo_.endo_simul(:,2:options_.periods+1));
illi = M_.lead_lag_incidence';
[i_cols,~,i_cols_j] = find(illi(:));
illi = illi(:,2:3);
[i_cols_J1,~,i_cols_1] = find(illi(:));
i_cols_T = nonzeros(M_.lead_lag_incidence(1:2,:)');
residuals = perfect_foresight_problem(yy(:),str2func([M_.fname '.dynamic']), y0, yT, ...
oo_.exo_simul,M_.params,oo_.steady_state, ...
M_.maximum_lag,options_.periods,M_.endo_nbr,i_cols, ...
i_cols_J1, i_cols_1, i_cols_T, i_cols_j, ...
M_.NNZDerivatives(1));
if max(abs(residuals))< options_.dynatol.f
oo_.deterministic_simulation.status = 1;
oo_.endo_simul=real(oo_.endo_simul);
else
oo_.deterministic_simulation.status = 0;
disp('Simulation terminated with imaginary parts in the residuals or endogenous variables.')
end
end
if oo_.deterministic_simulation.status == 1
disp('Perfect foresight solution found.')
else
disp('Failed to solve perfect foresight model')
end
skipline()
dyn2vec;
if ~isdates(options_.initial_period) && isnan(options_.initial_period)
initial_period = dates(1,1);
else
initial_period = options_.initial_period;
end
ts = dseries(transpose(oo_.endo_simul), initial_period, M_.endo_names);
assignin('base', 'Simulated_time_series', ts);