dynare/matlab/nonlinear-filters/conditional_filter_proposal.m

165 lines
7.3 KiB
Matlab
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

function [ProposalStateVector, Weights, flag] = conditional_filter_proposal(ReducedForm, y, StateVectors, SampleWeights, Q_lower_triangular_cholesky, H_lower_triangular_cholesky, ...
H, ParticleOptions, ThreadsOptions, options_, M_)
% Computes the proposal for each past particle using Gaussian approximations
% for the state errors and the Kalman filter
%
% INPUTS
% - ReducedForm [structure] Matlab's structure describing the reduced form model.
% - y [double] p×1 vector, current observation (p is the number of observed variables).
% - StateVectors
% - SampleWeights
% - Q_lower_triangular_cholesky
% - H_lower_triangular_cholesky
% - H
% - ParticleOptions
% - ThreadsOptions
% - options_
% - M_
%
% OUTPUTS
% - ProposalStateVector
% - Weights
% - flag
% Copyright © 2012-2022 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
flag = false;
order = options_.order;
if ReducedForm.use_k_order_solver
dr = ReducedForm.dr;
udr = ReducedForm.udr;
else
% Set local state space model (first-order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second-order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
ghs2 = ReducedForm.ghs2;
if order == 3
% Set local state space model (third order approximation).
ghxxx = ReducedForm.ghxxx;
ghuuu = ReducedForm.ghuuu;
ghxxu = ReducedForm.ghxxu;
ghxuu = ReducedForm.ghxuu;
ghxss = ReducedForm.ghxss;
ghuss = ReducedForm.ghuss;
end
end
constant = ReducedForm.constant;
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
if ParticleOptions.proposal_approximation.montecarlo
nodes = randn(ParticleOptions.number_of_particles/10, number_of_structural_innovations);
weights = 1.0/ParticleOptions.number_of_particles;
weights_c = weights;
elseif ParticleOptions.proposal_approximation.cubature
[nodes, weights] = spherical_radial_sigma_points(number_of_structural_innovations);
weights_c = weights;
elseif ParticleOptions.proposal_approximation.unscented
[nodes, weights, weights_c] = unscented_sigma_points(number_of_structural_innovations, ParticleOptions);
else
error('Estimation: This approximation for the proposal is not implemented or unknown!')
end
epsilon = Q_lower_triangular_cholesky*nodes';
yhat = repmat(StateVectors-state_variables_steady_state, 1, size(epsilon, 2));
if ReducedForm.use_k_order_solver
tmp = local_state_space_iteration_k(yhat, epsilon, dr, M_, options_, udr);
else
if order == 2
tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, ThreadsOptions.local_state_space_iteration_2);
elseif order == 3
tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, false);
else
error('Order > 3: use_k_order_solver should be set to true');
end
end
PredictedStateMean = tmp(mf0,:)*weights;
PredictedObservedMean = tmp(mf1,:)*weights;
if ParticleOptions.proposal_approximation.cubature || ParticleOptions.proposal_approximation.montecarlo
PredictedStateMean = sum(PredictedStateMean, 2);
PredictedObservedMean = sum(PredictedObservedMean, 2);
dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean)'.*sqrt(weights);
dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean)'.*sqrt(weights);
PredictedStateVariance = dState*dState';
big_mat = [dObserved dState; H_lower_triangular_cholesky zeros(number_of_observed_variables,number_of_state_variables)];
[~, mat] = qr2(big_mat,0);
mat = mat';
PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables, 1:number_of_observed_variables);
CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables);
StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables));
Error = y-PredictedObservedMean;
StateVectorMean = PredictedStateMean+(CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*Error;
if ParticleOptions.cpf_weights_method.amisanotristani
Weights = SampleWeights.*probability2(zeros(number_of_observed_variables,1), PredictedObservedVarianceSquareRoot, Error);
end
else
dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean);
dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean);
PredictedStateVariance = dState*diag(weights_c)*dState';
PredictedObservedVariance = dObserved*diag(weights_c)*dObserved'+H;
PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved';
KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance;
Error = y-PredictedObservedMean;
StateVectorMean = PredictedStateMean+KalmanFilterGain*Error;
StateVectorVariance = PredictedStateVariance-KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain';
StateVectorVariance = 0.5*(StateVectorVariance+StateVectorVariance');
[StateVectorVarianceSquareRoot, p] = chol(StateVectorVariance, 'lower') ;
if p
flag = true;
ProposalStateVector = zeros(number_of_state_variables, 1);
Weights = 0.0;
return
end
if ParticleOptions.cpf_weights_method.amisanotristani
Weights = SampleWeights.*probability2(zeros(number_of_observed_variables, 1), chol(PredictedObservedVariance)', Error);
end
end
ProposalStateVector = StateVectorVarianceSquareRoot*randn(size(StateVectorVarianceSquareRoot, 2), 1)+StateVectorMean;
if ParticleOptions.cpf_weights_method.murrayjonesparslow
PredictedStateVariance = 0.5*(PredictedStateVariance+PredictedStateVariance');
[PredictedStateVarianceSquareRoot, p] = chol(PredictedStateVariance, 'lower');
if p
flag = true;
ProposalStateVector = zeros(number_of_state_variables,1);
Weights = 0.0;
return
end
Prior = probability2(PredictedStateMean, PredictedStateVarianceSquareRoot, ProposalStateVector);
Posterior = probability2(StateVectorMean, StateVectorVarianceSquareRoot, ProposalStateVector);
Likelihood = probability2(y, H_lower_triangular_cholesky, measurement_equations(ProposalStateVector, ReducedForm, ThreadsOptions, options_, M_));
Weights = SampleWeights.*Likelihood.*(Prior./Posterior);
end