dynare/dynare++/tl/cc/equivalence.cweb

477 lines
12 KiB
Plaintext

@q $Id: equivalence.cweb 148 2005-04-19 15:12:26Z kamenik $ @>
@q Copyright 2004, Ondra Kamenik @>
@ Start of {\tt equivalence.cpp} file.
@c
#include "equivalence.h"
#include "permutation.h"
#include "tl_exception.h"
#include <cstring>
@<|OrdSequence| method codes@>;
@<|Equivalence| method codes@>;
@<|EquivalenceSet| method codes@>;
@<|EquivalenceBundle| method codes@>;
@
@<|OrdSequence| method codes@>=
@<|OrdSequence::operator[]| code@>;
@<|OrdSequence::operator<| code@>;
@<|OrdSequence::operator==| code@>;
@<|OrdSequence::add| codes@>;
@<|OrdSequence::has| code@>;
@<|OrdSequence::average()| code@>;
@<|OrdSequence::print| code@>;
@
@<|Equivalence| method codes@>=
@<|Equivalence| constructors@>;
@<|Equivalence| copy constructors@>;
@<|Equivalence::findHaving| codes@>;
@<|Equivalence::find| codes@>;
@<|Equivalence::insert| code@>;
@<|Equivalence::operator=| code@>;
@<|Equivalence::operator==| code@>;
@<|Equivalence::trace| code@>;
@<|Equivalence::trace| permuted code@>;
@<|Equivalence::print| code@>;
@
@<|EquivalenceSet| method codes@>=
@<|EquivalenceSet| constructor code@>;
@<|EquivalenceSet::has| code@>;
@<|EquivalenceSet::addParents| code@>;
@<|EquivalenceSet::print| code@>;
@
@<|EquivalenceBundle| method codes@>=
@<|EquivalenceBundle| constructor code@>;
@<|EquivalenceBundle| destructor code@>;
@<|EquivalenceBundle::get| code@>;
@<|EquivalenceBundle::generateUpTo| code@>;
@
@<|OrdSequence::operator[]| code@>=
int OrdSequence::operator[](int i) const
{
TL_RAISE_IF((i<0 || i>=length()),
"Index out of range in OrdSequence::operator[]");
return data[i];
}
@ Here we implement the ordering. It can be changed, or various
orderings can be used for different problem sizes. We order them
according to the average, and then according to the first item.
@<|OrdSequence::operator<| code@>=
bool OrdSequence::operator<(const OrdSequence& s) const
{
double ta = average();
double sa = s.average();
return (ta < sa || ((ta == sa) && (operator[](0) > s[0])));
}
@
@<|OrdSequence::operator==| code@>=
bool OrdSequence::operator==(const OrdSequence& s) const
{
if (length() != s.length())
return false;
int i = 0;
while (i < length() && operator[](i) == s[i])
i++;
return (i == length());
}
@ The first |add| adds a given integer to the class, the second
iterates through a given sequence and adds everything found in the
given class.
@<|OrdSequence::add| codes@>=
void OrdSequence::add(int i)
{
vector<int>::iterator vit = data.begin();
while (vit != data.end() && *vit < i)
++vit;
if (vit != data.end() && *vit == i)
return;
data.insert(vit, i);
}
@#
void OrdSequence::add(const OrdSequence& s)
{
vector<int>::const_iterator vit = s.data.begin();
while (vit != s.data.end()) {
add(*vit);
++vit;
}
}
@ Answers |true| if a given number is in the class.
@<|OrdSequence::has| code@>=
bool OrdSequence::has(int i) const
{
vector<int>::const_iterator vit = data.begin();
while (vit != data.end()) {
if (*vit == i)
return true;
++vit;
}
return false;
}
@ Return an average of the class.
@<|OrdSequence::average()| code@>=
double OrdSequence::average() const
{
double res = 0;
for (unsigned int i = 0; i < data.size(); i++)
res += data[i];
TL_RAISE_IF(data.size() == 0,
"Attempt to take average of empty class in OrdSequence::average");
return res/data.size();
}
@ Debug print.
@<|OrdSequence::print| code@>=
void OrdSequence::print(const char* prefix) const
{
printf("%s",prefix);
for (unsigned int i = 0; i < data.size(); i++)
printf("%d ",data[i]);
printf("\n");
}
@
@<|Equivalence| constructors@>=
Equivalence::Equivalence(int num)
: n(num)
{
for (int i = 0; i < num; i++) {
OrdSequence s;
s.add(i);
classes.push_back(s);
}
}
@#
Equivalence::Equivalence(int num, const char* dummy)
: n(num)
{
OrdSequence s;
for (int i = 0; i < num; i++)
s.add(i);
classes.push_back(s);
}
@ Copy constructors. The second also glues a given couple.
@<|Equivalence| copy constructors@>=
Equivalence::Equivalence(const Equivalence& e)
: n(e.n),
classes(e.classes)
{
}
@#
Equivalence::Equivalence(const Equivalence& e, int i1, int i2)
: n(e.n),
classes(e.classes)
{
seqit s1 = find(i1);
seqit s2 = find(i2);
if (s1 != s2) {
OrdSequence ns(*s1);
ns.add(*s2);
classes.erase(s1);
classes.erase(s2);
insert(ns);
}
}
@
@<|Equivalence::operator=| code@>=
const Equivalence& Equivalence::operator=(const Equivalence& e)
{
classes.clear();
n = e.n;
classes = e.classes;
return *this;
}
@
@<|Equivalence::operator==| code@>=
bool Equivalence::operator==(const Equivalence& e) const
{
if (! std::operator==(classes, e.classes))
return false;
if (n != e.n)
return false;
return true;
}
@ Return an iterator pointing to a class having a given integer.
@<|Equivalence::findHaving| codes@>=
Equivalence::const_seqit Equivalence::findHaving(int i) const
{
const_seqit si = classes.begin();
while (si != classes.end()) {
if ((*si).has(i))
return si;
++si;
}
TL_RAISE_IF(si == classes.end(),
"Couldn't find equivalence class in Equivalence::findHaving");
return si;
}
@#
Equivalence::seqit Equivalence::findHaving(int i)
{
seqit si = classes.begin();
while (si != classes.end()) {
if ((*si).has(i))
return si;
++si;
}
TL_RAISE_IF(si == classes.end(),
"Couldn't find equivalence class in Equivalence::findHaving");
return si;
}
@ Find $j$-th class for a given $j$.
@<|Equivalence::find| codes@>=
Equivalence::const_seqit Equivalence::find(int j) const
{
const_seqit si = classes.begin();
int i = 0;
while (si != classes.end() && i < j) {
++si;
i++;
}
TL_RAISE_IF(si == classes.end(),
"Couldn't find equivalence class in Equivalence::find");
return si;
}
@#
Equivalence::seqit Equivalence::find(int j)
{
seqit si = classes.begin();
int i = 0;
while (si != classes.end() && i < j) {
++si;
i++;
}
TL_RAISE_IF(si == classes.end(),
"Couldn't find equivalence class in Equivalence::find");
return si;
}
@ Insert a new class yielding the ordering.
@<|Equivalence::insert| code@>=
void Equivalence::insert(const OrdSequence& s)
{
seqit si = classes.begin();
while (si != classes.end() && *si < s)
++si;
classes.insert(si, s);
}
@ Trace the equivalence into the integer sequence. The classes are in
some order (described earlier), and items within classes are ordered,
so this implies, that the data can be linearized. This method
``prints'' them to the sequence. We allow for tracing only a given
number of classes from the beginning.
@<|Equivalence::trace| code@>=
void Equivalence::trace(IntSequence& out, int num) const
{
int i = 0;
int nc = 0;
for (const_seqit it = begin(); it != end() && nc < num; ++it, ++nc)
for (int j = 0; j < (*it).length(); j++, i++) {
TL_RAISE_IF(i >= out.size(),
"Wrong size of output sequence in Equivalence::trace");
out[i] = (*it)[j];
}
}
@
@<|Equivalence::trace| permuted code@>=
void Equivalence::trace(IntSequence& out, const Permutation& per) const
{
TL_RAISE_IF(out.size() != n,
"Wrong size of output sequence in Equivalence::trace");
TL_RAISE_IF(per.size() != numClasses(),
"Wrong permutation for permuted Equivalence::trace");
int i = 0;
for (int iclass = 0; iclass < numClasses(); iclass++) {
const_seqit itper = find(per.getMap()[iclass]);
for (int j = 0; j < (*itper).length(); j++, i++)
out[i] = (*itper)[j];
}
}
@ Debug print.
@<|Equivalence::print| code@>=
void Equivalence::print(const char* prefix) const
{
int i = 0;
for (const_seqit it = classes.begin();
it != classes.end();
++it, i++) {
printf("%sclass %d: ",prefix,i);
(*it).print("");
}
}
@ Here we construct a set of all equivalences over $n$-element
set. The construction proceeds as follows. We maintain a list of added
equivalences. At each iteration we pop front of the list, try to add
all parents of the popped equivalence. This action adds new
equivalences to the object and also to the added list. We finish the
iterations when the added list is empty.
In the beginning we start with
$\{\{0\},\{1\},\ldots,\{n-1\}\}$. Adding of parents is an action which
for a given equivalence tries to glue all possible couples and checks
whether a new equivalence is already in the equivalence set. This is
not effective, but we will do the construction only ones.
In this way we breath-first search a lattice of all equivalences. Note
that the lattice is modular, that is why the result of a construction
is a list with a property that between two equivalences with the same
number of classes there are only equivalences with that number of
classes. Obviously, the list is decreasing in a number of classes
(since it is constructed by gluing attempts).
@<|EquivalenceSet| constructor code@>=
EquivalenceSet::EquivalenceSet(int num)
: n(num),
equis()
{
list<Equivalence> added;
Equivalence first(n);
equis.push_back(first);
addParents(first, added);
while (! added.empty()) {
addParents(added.front(), added);
added.pop_front();
}
if (n > 1) {
Equivalence last(n, "");
equis.push_back(last);
}
}
@ This method is used in |addParents| and returns |true| if the object
already has that equivalence. We trace list of equivalences in reverse
order since equivalences are ordered in the list from the most
primitive (nothing equivalent) to maximal (all is equivalent). Since
we will have much more results of |has| method as |true|, and
|operator==| between equivalences is quick if number of classes
differ, and in time we will compare with equivalences with less
classes, then it is more efficient to trace the equivalences from less
classes to more classes. hence the reverse order.
@<|EquivalenceSet::has| code@>=
bool EquivalenceSet::has(const Equivalence& e) const
{
list<Equivalence>::const_reverse_iterator rit = equis.rbegin();
while (rit != equis.rend() && *rit != e)
++rit;
if (rit != equis.rend())
return true;
return false;
}
@ Responsibility of this methods is to try to glue all possible
couples within a given equivalence and add those which are not in the
list yet. These are added also to the |added| list.
If number of classes is 2 or 1, we exit, because there is nothing to
be added.
@<|EquivalenceSet::addParents| code@>=
void EquivalenceSet::addParents(const Equivalence& e,
list<Equivalence>& added)
{
if (e.numClasses() == 2 || e.numClasses() == 1)
return;
for (int i1 = 0; i1 < e.numClasses(); i1++)
for (int i2 = i1+1; i2 < e.numClasses(); i2++) {
Equivalence ns(e, i1, i2);
if (! has(ns)) {
added.push_back(ns);
equis.push_back(ns);
}
}
}
@ Debug print.
@<|EquivalenceSet::print| code@>=
void EquivalenceSet::print(const char* prefix) const
{
char tmp[100];
strcpy(tmp, prefix);
strcat(tmp, " ");
int i = 0;
for (list<Equivalence>::const_iterator it = equis.begin();
it != equis.end();
++it, i++) {
printf("%sequivalence %d:(classes %d)\n",prefix,i,(*it).numClasses());
(*it).print(tmp);
}
}
@ Construct the bundle. |nmax| is a maximum size of underlying set.
@<|EquivalenceBundle| constructor code@>=
EquivalenceBundle::EquivalenceBundle(int nmax)
{
nmax = max(nmax, 1);
generateUpTo(nmax);
}
@ Destruct bundle. Just free all pointers.
@<|EquivalenceBundle| destructor code@>=
EquivalenceBundle::~EquivalenceBundle()
{
for (unsigned int i = 0; i < bundle.size(); i++)
delete bundle[i];
}
@ Remember, that the first item is |EquivalenceSet(1)|.
@<|EquivalenceBundle::get| code@>=
const EquivalenceSet& EquivalenceBundle::get(int n) const
{
if (n > (int)(bundle.size()) || n < 1) {
TL_RAISE("Equivalence set not found in EquivalenceBundle::get");
return *(bundle[0]);
} else {
return *(bundle[n-1]);
}
}
@ Get |curmax| which is a maximum size in the bundle, and generate for
all sizes from |curmax+1| up to |nmax|.
@<|EquivalenceBundle::generateUpTo| code@>=
void EquivalenceBundle::generateUpTo(int nmax)
{
int curmax = bundle.size();
for (int i = curmax+1; i <= nmax; i++)
bundle.push_back(new EquivalenceSet(i));
}
@ End of {\tt equivalence.cpp} file.