dynare/dynare++/kord/global_check.cweb

442 lines
14 KiB
Plaintext

@q $Id: global_check.cweb 1830 2008-05-18 20:06:40Z kamenik $ @>
@q Copyright 2005, Ondra Kamenik @>
@ Start of {\tt global\_check.cpp} file.
@c
#include "SymSchurDecomp.h"
#include "global_check.h"
#include "smolyak.h"
#include "product.h"
#include "quasi_mcarlo.h"
@<|ResidFunction| constructor code@>;
@<|ResidFunction| copy constructor code@>;
@<|ResidFunction| destructor code@>;
@<|ResidFunction::setYU| code@>;
@<|ResidFunction::eval| code@>;
@<|GlobalChecker::check| vector code@>;
@<|GlobalChecker::check| matrix code@>;
@<|GlobalChecker::checkAlongShocksAndSave| code@>;
@<|GlobalChecker::checkOnEllipseAndSave| code@>;
@<|GlobalChecker::checkAlongSimulationAndSave| code@>;
@ Here we just set a reference to the approximation, and create a new
|DynamicModel|.
@<|ResidFunction| constructor code@>=
ResidFunction::ResidFunction(const Approximation& app)
: VectorFunction(app.getModel().nexog(), app.getModel().numeq()), approx(app),
model(app.getModel().clone()),
yplus(NULL), ystar(NULL), u(NULL), hss(NULL)
{
}
@
@<|ResidFunction| copy constructor code@>=
ResidFunction::ResidFunction(const ResidFunction& rf)
: VectorFunction(rf), approx(rf.approx), model(rf.model->clone()),
yplus(NULL), ystar(NULL), u(NULL), hss(NULL)
{
if (rf.yplus)
yplus = new Vector(*(rf.yplus));
if (rf.ystar)
ystar = new Vector(*(rf.ystar));
if (rf.u)
u = new Vector(*(rf.u));
if (rf.hss)
hss = new FTensorPolynomial(*(rf.hss));
}
@
@<|ResidFunction| destructor code@>=
ResidFunction::~ResidFunction()
{
delete model;
@<delete |y| and |u| dependent data@>;
}
@
@<delete |y| and |u| dependent data@>=
if (yplus)
delete yplus;
if (ystar)
delete ystar;
if (u)
delete u;
if (hss)
delete hss;
@ This sets $y^*$ and $u$. We have to create |ystar|, |u|, |yplus| and
|hss|.
@<|ResidFunction::setYU| code@>=
void ResidFunction::setYU(const Vector& ys, const Vector& xx)
{
@<delete |y| and |u| dependent data@>;
ystar = new Vector(ys);
u = new Vector(xx);
yplus = new Vector(model->numeq());
approx.getFoldDecisionRule().evaluate(DecisionRule::horner,
*yplus, *ystar, *u);
@<make a tensor polynomial of in-place subtensors from decision rule@>;
@<make |ytmp_star| be a difference of |yplus| from steady@>;
@<make |hss| and add steady to it@>;
}
@ Here we use a dirty tricky of converting |const| to non-|const| to
obtain a polynomial of subtensor corresponding to non-predetermined
variables. However, this new non-|const| polynomial will be used for a
construction of |hss| and will be used in |const| context. So this
dirty thing is safe.
Note, that there is always a folded decision rule in |Approximation|.
@<make a tensor polynomial of in-place subtensors from decision rule@>=
union {const FoldDecisionRule* c; FoldDecisionRule* n;} dr;
dr.c = &(approx.getFoldDecisionRule());
FTensorPolynomial dr_ss(model->nstat()+model->npred(), model->nboth()+model->nforw(),
*(dr.n));
@
@<make |ytmp_star| be a difference of |yplus| from steady@>=
Vector ytmp_star(ConstVector(*yplus, model->nstat(), model->npred()+model->nboth()));
ConstVector ysteady_star(dr.c->getSteady(), model->nstat(),
model->npred()+model->nboth());
ytmp_star.add(-1.0, ysteady_star);
@ Here is the |const| context of |dr_ss|.
@<make |hss| and add steady to it@>=
hss = new FTensorPolynomial(dr_ss, ytmp_star);
ConstVector ysteady_ss(dr.c->getSteady(), model->nstat()+model->npred(),
model->nboth()+model->nforw());
if (hss->check(Symmetry(0))) {
hss->get(Symmetry(0))->getData().add(1.0, ysteady_ss);
} else {
FFSTensor* ten = new FFSTensor(hss->nrows(), hss->nvars(), 0);
ten->getData() = ysteady_ss;
hss->insert(ten);
}
@ Here we evaluate the residual $F(y^*,u,u')$. We have to evaluate |hss|
for $u'=$|point| and then we evaluate the system $f$.
@<|ResidFunction::eval| code@>=
void ResidFunction::eval(const Vector& point, const ParameterSignal& sig, Vector& out)
{
KORD_RAISE_IF(point.length() != hss->nvars(),
"Wrong dimension of input vector in ResidFunction::eval");
KORD_RAISE_IF(out.length() != model->numeq(),
"Wrong dimension of output vector in ResidFunction::eval");
Vector yss(hss->nrows());
hss->evalHorner(yss, point);
model->evaluateSystem(out, *ystar, *yplus, yss, *u);
}
@ This checks the $E[F(y^*,u,u')]$ for a given $y^*$ and $u$ by
integrating with a given quadrature. Note that the input |ys| is $y^*$
not whole $y$.
@<|GlobalChecker::check| vector code@>=
void GlobalChecker::check(const Quadrature& quad, int level,
const ConstVector& ys, const ConstVector& x, Vector& out)
{
for (int ifunc = 0; ifunc < vfs.getNum(); ifunc++)
((GResidFunction&)(vfs.getFunc(ifunc))).setYU(ys, x);
quad.integrate(vfs, level, out);
}
@ This method is a bulk version of |@<|GlobalChecker::check| vector
code@>|. It decides between Smolyak and product quadrature according
to |max_evals| constraint.
Note that |y| can be either full (all endogenous variables including
static and forward looking), or just $y^*$ (state variables). The
method is able to recognize it.
@<|GlobalChecker::check| matrix code@>=
void GlobalChecker::check(int max_evals, const ConstTwoDMatrix& y,
const ConstTwoDMatrix& x, TwoDMatrix& out)
{
JournalRecordPair pa(journal);
pa << "Checking approximation error for " << y.ncols()
<< " states with at most " << max_evals << " evaluations" << endrec;
@<decide about type of quadrature@>;
Quadrature* quad;
int lev;
@<create the quadrature and report the decision@>;
@<check all column of |y| and |x|@>;
delete quad;
}
@
@<decide about type of quadrature@>=
GaussHermite gh;
SmolyakQuadrature dummy_sq(model.nexog(), 1, gh);
int smol_evals;
int smol_level;
dummy_sq.designLevelForEvals(max_evals, smol_level, smol_evals);
ProductQuadrature dummy_pq(model.nexog(), gh);
int prod_evals;
int prod_level;
dummy_pq.designLevelForEvals(max_evals, prod_level, prod_evals);
bool take_smolyak = (smol_evals < prod_evals) && (smol_level >= prod_level-1);
@
@<create the quadrature and report the decision@>=
if (take_smolyak) {
quad = new SmolyakQuadrature(model.nexog(), smol_level, gh);
lev = smol_level;
JournalRecord rec(journal);
rec << "Selected Smolyak (level,evals)=(" << smol_level << ","
<< smol_evals << ") over product (" << prod_level << ","
<< prod_evals << ")" << endrec;
} else {
quad = new ProductQuadrature(model.nexog(), gh);
lev = prod_level;
JournalRecord rec(journal);
rec << "Selected product (level,evals)=(" << prod_level << ","
<< prod_evals << ") over Smolyak (" << smol_level << ","
<< smol_evals << ")" << endrec;
}
@
@<check all column of |y| and |x|@>=
int first_row = (y.nrows() == model.numeq())? model.nstat() : 0;
ConstTwoDMatrix ysmat(y, first_row, 0, model.npred()+model.nboth(), y.ncols());
for (int j = 0; j < y.ncols(); j++) {
ConstVector yj(ysmat, j);
ConstVector xj(x, j);
Vector outj(out, j);
check(*quad, lev, yj, xj, outj);
}
@ This method checks an error of the approximation by evaluating
residual $E[F(y^*,u,u')\vert y^*,u]$ for $y^*$ being the steady state, and
changing $u$. We go through all elements of $u$ and vary them from
$-mult\cdot\sigma$ to $mult\cdot\sigma$ in |m| steps.
@<|GlobalChecker::checkAlongShocksAndSave| code@>=
void GlobalChecker::checkAlongShocksAndSave(mat_t* fd, const char* prefix,
int m, double mult, int max_evals)
{
JournalRecordPair pa(journal);
pa << "Calculating errors along shocks +/- "
<< mult << " std errors, granularity " << m << endrec;
@<setup |y_mat| of steady states for checking@>;
@<setup |exo_mat| for checking@>;
TwoDMatrix errors(model.numeq(), 2*m*model.nexog()+1);
check(max_evals, y_mat, exo_mat, errors);
@<report errors along shock and save them@>;
}
@
@<setup |y_mat| of steady states for checking@>=
TwoDMatrix y_mat(model.numeq(), 2*m*model.nexog()+1);
for (int j = 0; j < 2*m*model.nexog()+1; j++) {
Vector yj(y_mat, j);
yj = (const Vector&)model.getSteady();
}
@
@<setup |exo_mat| for checking@>=
TwoDMatrix exo_mat(model.nexog(), 2*m*model.nexog()+1);
exo_mat.zeros();
for (int ishock = 0; ishock < model.nexog(); ishock++) {
double max_sigma = sqrt(model.getVcov().get(ishock,ishock));
for (int j = 0; j < 2*m; j++) {
int jmult = (j < m)? j-m: j-m+1;
exo_mat.get(ishock, 1+2*m*ishock+j) =
mult*jmult*max_sigma/m;
}
}
@
@<report errors along shock and save them@>=
TwoDMatrix res(model.nexog(), 2*m+1);
JournalRecord rec(journal);
rec << "Shock value error" << endrec;
ConstVector err0(errors,0);
char shock[9];
char erbuf[17];
for (int ishock = 0; ishock < model.nexog(); ishock++) {
TwoDMatrix err_out(model.numeq(), 2*m+1);
sprintf(shock, "%-8s", model.getExogNames().getName(ishock));
for (int j = 0; j < 2*m+1; j++) {
int jj;
Vector error(err_out, j);
if (j != m) {
if (j < m)
jj = 1 + 2*m*ishock+j;
else
jj = 1 + 2*m*ishock+j-1;
ConstVector coljj(errors,jj);
error = coljj;
} else {
jj = 0;
error = err0;
}
JournalRecord rec1(journal);
sprintf(erbuf,"%12.7g ", error.getMax());
rec1 << shock << " " << exo_mat.get(ishock,jj)
<< "\t" << erbuf << endrec;
}
char tmp[100];
sprintf(tmp, "%s_shock_%s_errors", prefix, model.getExogNames().getName(ishock));
err_out.writeMat(fd, tmp);
}
@ This method checks errors on ellipse of endogenous states
(predetermined variables). The ellipse is shaped according to
covariance matrix of endogenous variables based on the first order
approximation and scaled by |mult|. The points on the
ellipse are chosen as polar images of the low discrepancy grid in a
cube.
The method works as follows: First we calculate symmetric Schur factor of
covariance matrix of the states. Second we generate low discrepancy
points on the unit sphere. Third we transform the sphere with the
variance-covariance matrix factor and multiplier |mult| and initialize
matrix of $u_t$ to zeros. Fourth we run the |check| method and save
the results.
@<|GlobalChecker::checkOnEllipseAndSave| code@>=
void GlobalChecker::checkOnEllipseAndSave(mat_t* fd, const char* prefix,
int m, double mult, int max_evals)
{
JournalRecordPair pa(journal);
pa << "Calculating errors at " << m
<< " ellipse points scaled by " << mult << endrec;
@<make factor of covariance of variables@>;
@<put low discrepancy sphere points to |ymat|@>;
@<transform sphere |ymat| and prepare |umat| for checking@>;
@<check on ellipse and save@>;
}
@ Here we set |ycovfac| to the symmetric Schur decomposition factor of
a submatrix of covariances of all endogenous variables. The submatrix
corresponds to state variables (predetermined plus both).
@<make factor of covariance of variables@>=
TwoDMatrix* ycov = approx.calcYCov();
TwoDMatrix ycovpred((const TwoDMatrix&)*ycov, model.nstat(), model.nstat(),
model.npred()+model.nboth(), model.npred()+model.nboth());
delete ycov;
SymSchurDecomp ssd(ycovpred);
ssd.correctDefinitness(1.e-05);
TwoDMatrix ycovfac(ycovpred.nrows(), ycovpred.ncols());
KORD_RAISE_IF(! ssd.isPositiveSemidefinite(),
"Covariance matrix of the states not positive \
semidefinite in GlobalChecker::checkOnEllipseAndSave");
ssd.getFactor(ycovfac);
@ Here we first calculate dimension |d| of the sphere, which is a
number of state variables minus one. We go through the |d|-dimensional
cube $\langle 0,1\rangle^d$ by |QMCarloCubeQuadrature| and make a
polar transformation to the sphere. The polar transformation $f^i$ can
be written recursively wrt. the dimension $i$ as:
$$\eqalign{
f^0() &= \left[1\right]\cr
f^i(x_1,\ldots,x_i) &=
\left[\matrix{cos(2\pi x_i)\cdot f^{i-1}(x_1,\ldots,x_{i-1})\cr sin(2\pi x_i)}\right]
}$$
@<put low discrepancy sphere points to |ymat|@>=
int d = model.npred()+model.nboth()-1;
TwoDMatrix ymat(model.npred()+model.nboth(), (d==0)? 2:m);
if (d == 0) {
ymat.get(0,0) = 1;
ymat.get(0,1) = -1;
} else {
int icol = 0;
ReversePerScheme ps;
QMCarloCubeQuadrature qmc(d, m, ps);
qmcpit beg = qmc.start(m);
qmcpit end = qmc.end(m);
for (qmcpit run = beg; run != end; ++run, icol++) {
Vector ycol(ymat, icol);
Vector x(run.point());
x.mult(2*M_PI);
ycol[0] = 1;
for (int i = 0; i < d; i++) {
Vector subsphere(ycol, 0, i+1);
subsphere.mult(cos(x[i]));
ycol[i+1] = sin(x[i]);
}
}
}
@ Here we multiply the sphere points in |ymat| with the Cholesky
factor to obtain the ellipse, scale the ellipse by the given |mult|,
and initialize matrix of shocks |umat| to zero.
@<transform sphere |ymat| and prepare |umat| for checking@>=
TwoDMatrix umat(model.nexog(), ymat.ncols());
umat.zeros();
ymat.mult(mult);
ymat.multLeft(ycovfac);
ConstVector ys(model.getSteady(), model.nstat(),
model.npred()+model.nboth());
for (int icol = 0; icol < ymat.ncols(); icol++) {
Vector ycol(ymat, icol);
ycol.add(1.0, ys);
}
@ Here we check the points and save the results to MAT-4 file.
@<check on ellipse and save@>=
TwoDMatrix out(model.numeq(), ymat.ncols());
check(max_evals, ymat, umat, out);
char tmp[100];
sprintf(tmp, "%s_ellipse_points", prefix);
ymat.writeMat(fd, tmp);
sprintf(tmp, "%s_ellipse_errors", prefix);
out.writeMat(fd, tmp);
@ Here we check the errors along a simulation. We simulate, then set
|x| to zeros, check and save results.
@<|GlobalChecker::checkAlongSimulationAndSave| code@>=
void GlobalChecker::checkAlongSimulationAndSave(mat_t* fd, const char* prefix,
int m, int max_evals)
{
JournalRecordPair pa(journal);
pa << "Calculating errors at " << m
<< " simulated points" << endrec;
RandomShockRealization sr(model.getVcov(), system_random_generator.int_uniform());
TwoDMatrix* y = approx.getFoldDecisionRule().simulate(DecisionRule::horner,
m, model.getSteady(), sr);
TwoDMatrix x(model.nexog(), m);
x.zeros();
TwoDMatrix out(model.numeq(), m);
check(max_evals, *y, x, out);
char tmp[100];
sprintf(tmp, "%s_simul_points", prefix);
y->writeMat(fd, tmp);
sprintf(tmp, "%s_simul_errors", prefix);
out.writeMat(fd, tmp);
delete y;
}
@ End of {\tt global\_check.cpp} file.