dynare/dynare++/extern/R/dynareR.cpp

250 lines
7.8 KiB
C++

// $Id: dynareR.cpp 862 2006-08-04 17:34:56Z tamas $
// Copyright 2006, Tamas K Papp
#include "dynare3.h" // Dynare class
#include "approximation.h" // Approximation class
// exceptions
#include "dynare_exception.h"
#include "parser/cc/parser_exception.h"
#include "utils/cc/exception.h"
#include "SylvException.h"
#include "tl_exception.h"
#include "kord_exception.h"
#include <algorithm>
#include <string.h>
#ifdef DEBUG
#include <stdio.h>
#endif
#include <R_ext/Memory.h>
/** This file containt the C glue functions for an R interface to
* Dynare++. Although written in standard C (except for the use of
* R_alloc), the indexing, calling and memory management conventions
* of the functions in this file were tailored for R.
*
* It is not recommended that you use this interface for anything else
* but R.
*/
/** Error codes: these error codes correspond to possible
* exceptions. */
#define DYNARER_SYLVEXCEPTION 1
#define DYNARER_DYNAREEXCEPTION 2
#define DYNARER_OGUEXCEPTION 3
#define DYNARER_TLEXCEPTION 4
#define DYNARER_KORDEXCEPTION 5
#define DYNARER_NAMESMATCHINGERROR 6
/** Copies the message into a buffer. The buffer is allocated and
* managed by R, ie it will be garbage collected after the .C call
* returns and the contents are duplicated.
*/
char *passmessage(const char *errormessage) {
long l = strlen(errormessage);
char *em = R_alloc(l, 1);
return strcpy(em, errormessage);
}
/** This function puts the mapping between the newtotal items after
* nl[offset] and the items in orig into the buffer perm, which has to
* be at least as long as newtotal. The function uses R indexing,
* that is to say, the first index is 1.
*/
int matchnames(const char **orig, int origtotal,
const NameList &nl, int offset, int newtotal,
int *perm) {
#ifdef DEBUG
printf("matching names (R indexing):\n");
#endif
for (int i=0; i < newtotal; i++) {
int j;
for (j=0; j < origtotal; j++)
if (strcmp(nl.getName(offset+i), *(orig+j))==0) {
*(perm+i) = j+1;
#ifdef DEBUG
printf("%d -> %d\n",i+1,j+1);
#endif
break;
}
if (j==origtotal)
return 1;
}
return 0;
}
/** dynareR is the interface function. The user provides:
* - a list of endogenous and exogenous variables, a list of
* parameters (and the length of each list)
* - the model equations (modeleq, pointer to a 0-terminated string)
* - the order of expansion (ord)
* - journal file name (jnlfile, can be "/dev/null" for no journal)
* - values for the parametes (parval)
* - variance-covariance matrix (vcov, stacked by columns, R does
* this)
* - initial values for finding the steady state (initval)
* - and the number of steps for the approximation algorithm
* (numsteps)
*
* If successful, the interface will write the results to these
* buffers:
* - tensorbuffer for the steady state and the flattened tensors
* - num_state for the number of endogenous variables that ended up in
* the state
* - mappings to variable names (ordering_state, ordering_endo,
* ordering_exo), indices start from 1
* - the deterministic steady state (newinitval)
*
* If dynare throws an exception, the interface tries to catch it and
* return an error code (error), and error message (errormessage), and
* if applicable, information on the stability of the model
* (kordcode). errormessage is allocated into R's memory, and will be
* collected after duplication.
*/
extern "C" {
void dynareR(const char** endo, const int* num_endo,
const char** exo, const int* num_exo,
const char** par, const int* num_par,
const char** equations, const int* ord, const char* jnlfile,
const double *parval, const double *vcov,
const double *initval,
const int *num_steps,
double* tensorbuffer,
int *num_state, int *ordering_state,
int *ordering_endo, int *ordering_exo,
double *newinitval,
int* error, char **errormessage, int *kordcode) {
// construct the model here
try {
#ifdef DEBUG // will print only first var names etc.
printf("eq: %s\nendo: %d %s\nexo: %d %s\npar: %d %s\nord: %d\n",
*equations,*num_endo,*endo,*num_exo,*exo,*num_par,*par,*ord);
#endif
// create journal
Journal journal(jnlfile);
// create Dynare object
Dynare dynare(endo, *num_endo, exo, *num_exo,
par, *num_par, *equations, strlen(*equations),
*ord, journal);
// set Vcov and parameter values
copy(parval,parval+(*num_par),dynare.getParams().base());
#ifdef DEBUG
printf("parameter values (%d):\n",dynare.getParams().length());
dynare.getParams().print();
#endif
copy(vcov,vcov+(*num_exo)*(*num_exo),dynare.getVcov().base());
#ifdef DEBUG
printf("vcov matrix:\n");
dynare.getVcov().print();
#endif
// set initial values
Vector iv(initval,*num_endo);
#ifdef DEBUG
printf("initial values:\n");
iv.print();
#endif
dynare.setInitOuter(iv);
// construct approximation
tls.init(dynare.order(),
dynare.nstat()+2*dynare.npred()+3*dynare.nboth()+
2*dynare.nforw()+dynare.nexog());
Approximation approximation(dynare,journal,*num_steps);
approximation.walkStochSteady();
// write the steady state into the buffer
int ny = dynare.ny();
const Vector ss(dynare.getSteady());
// ss = ConstVector(approximation.getSS(), 0); // FIXME allow
// // for nonzero
int s = dynare.getStateNames().getNum();
int sm = s;
tensorbuffer = copy(ss.base(),ss.base()+ny,tensorbuffer);
// write the tensors into buffer
const UnfoldDecisionRule& udr =
approximation.getUnfoldDecisionRule();
for (int i=1; i <= *ord; i++) {
const UFSTensor* t = udr.get(Symmetry(i));
#ifdef DEBUG
printf("tensor %d:\n", i);
t->print();
#endif
tensorbuffer = copy(t->base(), t->base()+ny*sm, tensorbuffer);
sm *= s;
}
// save number of endogenous states
*num_state = s-(*num_exo);
// ordering
#ifdef DEBUG
printf("all endo names:\n");
dynare.getAllEndoNames().print();
printf("all state names:\n");
dynare.getStateNames().print();
#endif
if (matchnames(endo, *num_endo, dynare.getAllEndoNames(),
0, *num_endo, ordering_endo) ||
matchnames(endo, *num_endo, dynare.getStateNames(),
0, *num_state, ordering_state) ||
matchnames(exo, *num_exo, dynare.getStateNames(),
*num_state, *num_exo, ordering_exo)) {
*error = DYNARER_NAMESMATCHINGERROR;
*errormessage = "There was a problem when matching names. This is weird and should not happen.";
return;
}
// return new init values (first column of SS matrix)
ConstVector newinit((const GeneralMatrix&) approximation.getSS(), 0);
#ifdef DEBUG
printf("new initial values:\n");
newinit.print();
#endif
copy(newinit.base(),newinit.base()+(*num_endo),newinitval);
} catch (const SylvException &e) {
*error = DYNARER_SYLVEXCEPTION;
char errorbuffer[501];
e.printMessage(errorbuffer, 500);
*errormessage = passmessage(errorbuffer);
#ifdef DEBUG
printf("Caught Sylv exception: ");
e.printMessage();
#endif
return;
} catch (const DynareException &e) {
*error = DYNARER_DYNAREEXCEPTION;
*errormessage = passmessage(e.message());
#ifdef DEBUG
printf("Caught Dynare exception: %s\n", e.message());
#endif
return;
} catch (const ogu::Exception &e) {
*error = DYNARER_OGUEXCEPTION;
*errormessage = passmessage(e.message());
#ifdef DEBUG
printf("Caught ogu::Exception: ");
e.print();
#endif
return;
} catch (const TLException &e) {
*error = DYNARER_TLEXCEPTION;
*errormessage = passmessage(e.getmessage());
#ifdef DEBUG
printf("Caugth TL exception: ");
e.print();
#endif
return;
} catch (const KordException &e) {
*error = DYNARER_KORDEXCEPTION;
*errormessage = passmessage(e.getmessage());
*kordcode = e.code(); // Kord error code
#ifdef DEBUG
printf("Caugth Kord exception: ");
e.print();
#endif
return;
}
*error = 0;
return;}
}