dynare/tests/var-expectations/6/example1.mod

109 lines
3.6 KiB
Modula-2

// --+ options: stochastic,transform_unary_ops,json=compute +--
var foo x1 x2 x1bar x2bar;
varexo ex1 ex2 ex1bar ex2bar;
parameters a_x1_0 a_x1_0_ a_x1_1 a_x1_2 a_x1_x2_1 a_x1_x2_2
a_x2_0 a_x2_1 a_x2_2 a_x2_x1_1 a_x2_x1_2
beta ;
a_x1_0 = -.9;
a_x1_0_ = -.8;
a_x1_1 = .4;
a_x1_2 = .3;
a_x1_x2_1 = .1;
a_x1_x2_2 = .2;
a_x2_0 = -.9;
a_x2_1 = .2;
a_x2_2 = -.1;
a_x2_x1_1 = -.1;
a_x2_x1_2 = .2;
beta = 1/(1+.02);
// Define a TREND_COMPONENT model from a subset of equations in the model block.
trend_component_model(model_name=toto, eqtags=['eq:x1', 'eq:x2', 'eq:x1bar', 'eq:x2bar'], targets=['eq:x1bar', 'eq:x2bar']);
/* Define a VAR_EXPECTATION_MODEL
** ------------------------------
**
** model_name: the name of the VAR_EXPECTATION_MODEL (mandatory).
** auxiliary_model_name: the name of the VAR model used for the expectations (mandatory).
** variable: the name of the variable to be forecasted (mandatory).
** horizon: the horizon forecast (mandatory).
** discount: the discount factor, which can be a value or a declared parameter (default is 1.0, no discounting).
**
**
** The `horizon` parameter can be an integer in which case the (discounted) `horizon` step ahead forecast
** is computed using the VAR model `var_model_name`. Alternatively, `horizon` can be a range. In this case
** VAR_EXPECTATION_MODEL returns a discounted sum of expected values. If `horizon` is set equal to the range
** 0:Inf, then VAR_EXPECTATION_MODEL computes:
**
** ∑ βʰ Eₜ[yₜ₊ₕ]
**
** where the sum is over h=0,…,∞ and the conditional expectations are computed with VAR model `var_model_name`.
*/
var_expectation_model(model_name = varexp, expression = x1, auxiliary_model_name = toto, horizon = 15:50, discount = beta) ;
model;
[name='eq:x1', data_type='nonstationary']
diff(x1) = a_x1_0*(x1(-1)-x1bar(-1))+a_x1_0_*(x2(-1)-x2bar(-1)) + a_x1_1*diff(x1(-1)) + a_x1_2*diff(x1(-2)) + + a_x1_x2_1*diff(x2(-1)) + a_x1_x2_2*diff(x2(-2)) + ex1;
[name='eq:x2', data_type='nonstationary']
diff(x2) = a_x2_0*(x2(-1)-x2bar(-1)) + a_x2_1*diff(x1(-1)) + a_x2_2*diff(x1(-2)) + + a_x2_x1_1*diff(x2(-1)) + a_x2_x1_2*diff(x2(-2)) + ex2;
[name='eq:x1bar', data_type='nonstationary']
x1bar = x1bar(-1) + ex1bar;
[name='eq:x2bar', data_type='nonstationary']
x2bar = x2bar(-1) + ex2bar;
foo = .5*foo(-1) + var_expectation(varexp);
end;
// Initialize the VAR expectation model, will build the companion matrix of the VAR.
var_expectation.initialize('varexp')
// Update VAR_EXPECTATION reduced form parameters
var_expectation.update('varexp');
weights = M_.params(M_.var_expectation.varexp.param_indices);
if ~all(weights(1:6)) || ~all(weights(9:10)) || weights(7) || weights(8) || weights(11) || weights(12)
error('Wrong reduced form parameter for VAR_EXPECTATION_MODEL')
end
var_expectation.print('varexp');
shocks;
var ex1 = .01;
var ex2 = .01;
var ex1bar = .02;
var ex2bar = .02;
end;
verbatim;
initialconditions =zeros(3,5);
initialconditions(3,1) = .10; % foo(-1)
initialconditions(3,2) = .20; % x1(-1)
initialconditions(2,2) = .22; % x1(-2)
initialconditions(1,2) = .24; % x1(-3)
initialconditions(3,3) = .30; % x2(-1)
initialconditions(2,3) = .32; % x2(-2)
initialconditions(1,3) = .34; % x2(-3)
initialconditions(3,4) = .25; % x1bar(-1)
initialconditions(3,5) = .25; % x2bar(-1)
initialconditions = ...
dseries(initialconditions, dates('2000Q1'), {'foo', 'x1','x2', 'x1bar', 'x2bar'});
set_dynare_seed('default');
ts = simul_backward_model(initialconditions, 100);
foo = ts.foo.data;
save('example1.mat', 'foo');
end;