dynare/matlab/steady.m

401 lines
14 KiB
Matlab

function steady()
% function steady()
% computes and prints the steady state calculations
%
% INPUTS
% none
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% none
% Copyright © 2001-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
global M_ oo_ options_
test_for_deep_parameters_calibration(M_);
if options_.steadystate_flag && options_.homotopy_mode
error('STEADY: Can''t use homotopy when providing a steady state external file');
end
% Keep of a copy of M_.Sigma_e
Sigma_e = M_.Sigma_e;
% Set M_.Sigma_e=0 (we compute the *deterministic* steady state)
M_.Sigma_e(:,:) = 0;
info = 0;
switch options_.homotopy_mode
case 1
[M_,oo_,info,ip,ix,ixd] = homotopy1(options_.homotopy_values,options_.homotopy_steps,M_,options_,oo_);
case 2
homotopy2(options_.homotopy_values, options_.homotopy_steps);
case 3
[M_,oo_,info,ip,ix,ixd] = homotopy3(options_.homotopy_values,options_.homotopy_steps,M_,options_,oo_);
end
if info(1)
hv = options_.homotopy_values;
skipline()
disp('WARNING: homotopy step was not completed')
disp('The last values for which a solution was found are:')
for i=1:length(ip)
fprintf('%12s %12.6f\n',char(M_.param_names(hv(ip(i),2))), ...
M_.params(hv(ip(i),2)))
end
for i=1:length(ix)
fprintf('%12s %12.6f\n',char(M_.exo_names(hv(ix(i),2))), ...
oo_.exo_steady_state(hv(ix(i),2)))
end
for i=1:length(ixd)
fprintf('%12s %12.6f\n',char(M_.exo_det_names(hv(ixd(i),2))), ...
oo_.exo_det_steady_state(hv(ixd(i),2)))
end
if options_.homotopy_force_continue
disp('Option homotopy_continue is set, so I continue ...')
else
error('Homotopy step failed')
end
end
[oo_.steady_state,M_.params,info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck);
if info(1) == 0
if ~options_.noprint
disp_steady_state(M_,oo_,options_);
end
else
if ~options_.noprint
if ~isempty(oo_.steady_state)
display_static_residuals(M_, options_, oo_);
else
skipline()
disp('Residuals of the static equations cannot be computed because the steady state routine returned an empty vector.')
skipline()
end
end
if options_.debug
fprintf('\nsteady: The steady state computation failed. It terminated with the following values:\n')
if ~isreal(oo_.steady_state)
format_string=sprintf('%%-%us= %%g%%+gi\n',size(strvcat(M_.endo_names),2)+1);
else
format_string=sprintf('%%-%us= %%14.6f\n',size(strvcat(M_.endo_names),2)+1);
end
for i=1:M_.orig_endo_nbr
if ~isreal(oo_.steady_state)
fprintf(format_string, M_.endo_names{i}, real(oo_.steady_state(i)),imag(oo_.steady_state(i)));
else
fprintf(format_string, M_.endo_names{i}, oo_.steady_state(i));
end
end
end
print_info(info,options_.noprint, options_);
end
M_.Sigma_e = Sigma_e;
function [M,oo,info,ip,ix,ixd] = homotopy1(values, step_nbr, M, options, oo)
% Implements homotopy (mode 1) for steady-state computation.
% The multi-dimensional vector going from the set of initial values
% to the set of final values is divided in as many sub-vectors as
% there are steps, and the problem is solved as many times.
%
% INPUTS
% values: a matrix with 4 columns, representing the content of
% homotopy_setup block, with one variable per line.
% Column 1 is variable type (1 for exogenous, 2 for
% exogenous deterministic, 4 for parameters)
% Column 2 is symbol integer identifier.
% Column 3 is initial value, and column 4 is final value.
% Column 3 can contain NaNs, in which case previous
% initialization of variable will be used as initial value.
% step_nbr: number of steps for homotopy
% M struct of model parameters
% options struct of options
% oo struct of outputs
%
% OUTPUTS
% M struct of model parameters
% oo struct of outputs
% ip index of parameters
% ix index of exogenous variables
% ixp index of exogenous deterministic variables
nv = size(values, 1);
ip = find(values(:,1) == 4); % Parameters
ix = find(values(:,1) == 1); % Exogenous
ixd = find(values(:,1) == 2); % Exogenous deterministic
if length([ip; ix; ixd]) ~= nv
error('HOMOTOPY mode 1: incorrect variable types specified')
end
% Construct vector of starting values, using previously initialized values
% when initial value has not been given in homotopy_setup block
oldvalues = values(:,3);
ipn = find(values(:,1) == 4 & isnan(oldvalues));
oldvalues(ipn) = M.params(values(ipn, 2));
ixn = find(values(:,1) == 1 & isnan(oldvalues));
oldvalues(ixn) = oo.exo_steady_state(values(ixn, 2));
ixdn = find(values(:,1) == 2 & isnan(oldvalues));
oldvalues(ixdn) = oo.exo_det_steady_state(values(ixdn, 2));
points = zeros(nv, step_nbr+1);
for i = 1:nv
if (oldvalues(i) ~= values(i, 4))
points(i,:) = oldvalues(i):(values(i,4)-oldvalues(i))/step_nbr:values(i,4);
else
points(i,:) = values(i,4);
end
end
for i=1:step_nbr+1
disp([ 'HOMOTOPY mode 1: computing step ' int2str(i-1) '/' int2str(step_nbr) '...' ])
old_params = M.params;
old_exo = oo.exo_steady_state;
old_exo_det = oo.exo_det_steady_state;
M.params(values(ip,2)) = points(ip,i);
oo.exo_steady_state(values(ix,2)) = points(ix,i);
oo.exo_det_steady_state(values(ixd,2)) = points(ixd,i);
[steady_state,M.params,info] = evaluate_steady_state(oo.steady_state,[oo.exo_steady_state; oo.exo_det_steady_state],M,options,~options.steadystate.nocheck);
if info(1) == 0
% if homotopy step is not successful, current values of steady
% state are not modified
oo.steady_state = steady_state;
else
M.params = old_params;
oo.exo_steady_state = old_exo;
oo.exo_det_steady_state = old_exo_det;
break
end
end
function homotopy2(values, step_nbr)
% Implements homotopy (mode 2) for steady-state computation.
% Only one parameter/exogenous is changed at a time.
% Computation jumps to next variable only when current variable has been
% brought to its final value.
% Variables are processed in the order in which they appear in "values".
% The problem is solved var_nbr*step_nbr times.
%
% INPUTS
% values: a matrix with 4 columns, representing the content of
% homotopy_setup block, with one variable per line.
% Column 1 is variable type (1 for exogenous, 2 for
% exogenous deterministic, 4 for parameters)
% Column 2 is symbol integer identifier.
% Column 3 is initial value, and column 4 is final value.
% Column 3 can contain NaNs, in which case previous
% initialization of variable will be used as initial value.
% step_nbr: number of steps for homotopy
global M_ oo_ options_
nv = size(values, 1);
oldvalues = values(:,3);
% Initialize all variables with initial value, or the reverse...
for i = 1:nv
switch values(i,1)
case 1
if isnan(oldvalues(i))
oldvalues(i) = oo_.exo_steady_state(values(i,2));
else
oo_.exo_steady_state(values(i,2)) = oldvalues(i);
end
case 2
if isnan(oldvalues(i))
oldvalues(i) = oo_.exo_det_steady_state(values(i,2));
else
oo_.exo_det_steady_state(values(i,2)) = oldvalues(i);
end
case 4
if isnan(oldvalues(i))
oldvalues(i) = M_.params(values(i,2));
else
M_.params(values(i,2)) = oldvalues(i);
end
otherwise
error('HOMOTOPY mode 2: incorrect variable types specified')
end
end
if any(oldvalues == values(:,4))
error('HOMOTOPY mode 2: initial and final values should be different')
end
% Actually do the homotopy
for i = 1:nv
switch values(i,1)
case 1
varname = M_.exo_names{values(i,2)};
case 2
varname = M_.exo_det_names{values(i,2)};
case 4
varname = M_.param_names{values(i,2)};
end
for v = oldvalues(i):(values(i,4)-oldvalues(i))/step_nbr:values(i,4)
switch values(i,1)
case 1
oo_.exo_steady_state(values(i,2)) = v;
case 2
oo_.exo_det_steady_state(values(i,2)) = v;
case 4
M_.params(values(i,2)) = v;
end
disp([ 'HOMOTOPY mode 2: lauching solver with ' varname ' = ' num2str(v) ' ...'])
oo_.steady_state = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck);
end
end
function [M,oo,info,ip,ix,ixd] = homotopy3(values, step_nbr, M, options, oo)
% Implements homotopy (mode 3) for steady-state computation.
% Tries first the most extreme values. If it fails to compute the steady
% state, the interval between initial and desired values is divided by two
% for each parameter. Every time that it is impossible to find a steady
% state, the previous interval is divided by two. When one succeed to find
% a steady state, the previous interval is multiplied by two.
%
% INPUTS
% values: a matrix with 4 columns, representing the content of
% homotopy_setup block, with one variable per line.
% Column 1 is variable type (1 for exogenous, 2 for
% exogenous deterministic, 4 for parameters)
% Column 2 is symbol integer identifier.
% Column 3 is initial value, and column 4 is final value.
% Column 3 can contain NaNs, in which case previous
% initialization of variable will be used as initial value.
% step_nbr: maximum number of steps to try before aborting
% M struct of model parameters
% options struct of options
% oo struct of outputs
%
% OUTPUTS
% M struct of model parameters
% oo struct of outputs
% info return status 0: OK, 1: failed
% ip index of parameters
% ix index of exogenous variables
% ixp index of exogenous deterministic variables
info = [];
tol = 1e-8;
nv = size(values,1);
ip = find(values(:,1) == 4); % Parameters
ix = find(values(:,1) == 1); % Exogenous
ixd = find(values(:,1) == 2); % Exogenous deterministic
if length([ip; ix; ixd]) ~= nv
error('HOMOTOPY mode 3: incorrect variable types specified')
end
% Construct vector of starting values, using previously initialized values
% when initial value has not been given in homotopy_setup block
last_values = values(:,3);
ipn = find(values(:,1) == 4 & isnan(last_values));
last_values(ipn) = M.params(values(ipn, 2));
ixn = find(values(:,1) == 1 & isnan(last_values));
last_values(ixn) = oo.exo_steady_state(values(ixn, 2));
ixdn = find(values(:,1) == 2 & isnan(last_values));
last_values(ixdn) = oo.exo_det_steady_state(values(ixdn, 2));
targetvalues = values(:,4);
%if min(abs(targetvalues - last_values)) < tol
% error('HOMOTOPY mode 3: distance between initial and final values should be at least %e for all variables', tol)
%end
iplus = find(targetvalues > last_values);
iminus = find(targetvalues < last_values);
curvalues = last_values;
inc = (targetvalues-last_values)/2;
kplus = [];
kminus = [];
last_values = [];
disp('HOMOTOPY mode 3: launching solver at initial point...')
iter = 1;
while iter <= step_nbr
M.params(values(ip,2)) = curvalues(ip);
oo.exo_steady_state(values(ix,2)) = curvalues(ix);
oo.exo_det_steady_state(values(ixd,2)) = curvalues(ixd);
old_ss = oo.steady_state;
[steady_state,params,info] = evaluate_steady_state(old_ss,[oo.exo_steady_state; oo.exo_det_steady_state],M,options,~options.steadystate.nocheck);
if info(1) == 0
oo.steady_state = steady_state;
M.params = params;
if length([kplus; kminus]) == nv
return
end
if iter == 1
disp('HOMOTOPY mode 3: successful step, now jumping to final point...')
else
disp('HOMOTOPY mode 3: successful step, now multiplying increment by 2...')
end
last_values = curvalues;
old_params = params;
old_exo_steady_state = oo.exo_steady_state;
old_exo_det_steady_state = oo.exo_det_steady_state;
inc = 2*inc;
elseif iter == 1
error('HOMOTOPY mode 3: can''t solve the model at 1st iteration')
else
disp('HOMOTOPY mode 3: failed step, now dividing increment by 2...')
inc = inc/2;
oo.steady_state = old_ss;
end
curvalues = last_values + inc;
kplus = find(curvalues(iplus) >= targetvalues(iplus));
curvalues(iplus(kplus)) = targetvalues(iplus(kplus));
kminus = find(curvalues(iminus) <= targetvalues(iminus));
curvalues(iminus(kminus)) = targetvalues(iminus(kminus));
if max(abs(inc)) < tol
disp('HOMOTOPY mode 3: failed, increment has become too small')
M.params = old_params;
oo.exo_steady_state = old_exo_steady_state;
oo.exo_det_steady_state = old_exo_det_steady_state;
return
end
iter = iter + 1;
end
disp('HOMOTOPY mode 3: failed, maximum iterations reached')
M.params = old_params;
oo.exo_steady_state = old_exo_steady_state;
oo.exo_det_steady_state = old_exo_det_steady_state;