dynare/matlab/optimization/simplex_optimization_routine.m

554 lines
19 KiB
Matlab
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

function [x,fval,exitflag] = simplex_optimization_routine(objective_function,x,options,var_names,varargin)
% Nelder-Mead like optimization routine (see http://en.wikipedia.org/wiki/Nelder-Mead_method)
%
% By default the standard values for the reflection, the expansion, the contraction
% and the shrink coefficients are used (alpha = 1, chi = 2, psi = 1 / 2 and σ = 1 / 2).
%
% The routine automatically restarts from the current solution while amelioration is possible.
%
% INPUTS
% o objective_function [string] Name of the objective function to be minimized.
% o x [double] n*1 vector, starting guess of the optimization routine.
% o options [structure] Options of this implementation of the simplex algorithm.
% o var_names [cell] Names of parameters
% for verbose output
% o varargin [cell of structures] Structures to be passed to the objective function.
%
% varargin{1} --> dataset_
% varargin{2} --> dataset_info
% varargin{3} --> options_
% varargin{4} --> M_
% varargin{5} --> estim_params_
% varargin{6} --> bayestopt_
% varargin{7} --> BoundsInfo
% varargin{8} --> oo_
%
% OUTPUTS
% o x [double] n*1 vector, estimate of the optimal inputs.
% o fval [double] scalar, value of the objective at the optimum.
% o exitflag [integer] scalar equal to 0 or 1 (0 if the algorithm did not converge to
% a minimum).
% Copyright © 2010-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Set verbose mode
verbose = options.verbosity;
% Set header
if verbose
header = sprintf('#Iter. #FnCalls. Best Value Worst Value Norm(f) Norm(x) Move');
iter_ = ' ';
fval_ = ' ';
end
% Set number of control variables.
number_of_variables = length(x);
% get options.
if isempty(options.maxfcall)
max_func_calls = options.maxfcallfactor*number_of_variables;
else
max_func_calls=options.maxfcall;
end
% Set tolerance parameter.
if isfield(options,'tolerance') && isfield(options.tolerance,'x')
x_tolerance = options.tolerance.x;
else
x_tolerance = 1e-4;
end
% Set tolerance parameter.
if isfield(options,'tolerance') && isfield(options.tolerance,'f')
f_tolerance = options.tolerance.f;
else
f_tolerance = 1e-4;
end
% Set maximum number of iterations.
if isfield(options,'maxiter')
max_iterations = options.maxiter;
else
max_iterations = 10000;
end
% Set reflection parameter.
if isfield(options,'reflection_parameter')
if isfield(options.reflection_parameter,'value')
rho = options.reflection_parameter.value;
else
rho = 1.0;
end
if isfield(options.reflection_parameter,'random')
randomize_rho = options.reflection_parameter.random;
lambda_rho = 1/rho;
else
randomize_rho = 0;
end
else
rho = 1.0;
randomize_rho = 0;
end
% Set expansion parameter.
if isfield(options,'expansion_parameter')
if isfield(options.expansion_parameter,'value')
chi = options.expansion_parameter.value;
else
chi = 2.0;
end
if isfield(options.expansion_parameter,'random')
randomize_chi = options.expansion_parameter.random;
lambda_chi = 1/chi;
else
randomize_chi = 0;
end
if isfield(options.expansion_parameter,'optim')
optimize_expansion_parameter = options.expansion_parameter.optim;
else
optimize_expansion_parameter = 0;
end
else
chi = 2.0;
randomize_chi = 0;
optimize_expansion_parameter = 1;
end
% Set contraction parameter.
if isfield(options,'contraction_parameter')
if isfield(options.contraction_parameter,'value')
psi = options.contraction_parameter.value;
else
psi = 0.5;
end
if isfield(options.contraction_parameter,'random')
randomize_psi = options.expansion_parameter.random;
else
randomize_psi = 0;
end
else
psi = 0.5;
randomize_psi = 0;
end
% Set shrink parameter.
if isfield(options,'shrink_parameter')
if isfield(options.shrink_parameter,'value')
sigma = options.shrink_parameter.value;
else
sigma = 0.5;
end
if isfield(options.shrink_parameter,'random')
randomize_sigma = options.shrink_parameter.random;
else
randomize_sigma = 0;
end
else
sigma = 0.5;
randomize_sigma = 0;
end
% Set delta parameter.
if isfield(options,'delta_factor')% Size of the simplex
delta = options.delta_factor;
else
delta = 0.05;
end
DELTA = delta;
zero_delta = delta/200;% To be used instead of delta if x(i) is zero.
% Set max_no_improvements.
if isfield(options,'max_no_improvements')
max_no_improvements = options.max_no_improvements;
else
max_no_improvements = number_of_variables*10;
end
% Set vector of indices.
unit_vector = ones(1,number_of_variables);
trend_vector_1 = 1:number_of_variables;
trend_vector_2 = 2:(number_of_variables+1);
% Set initial simplex around the initial guess (x).
if verbose
skipline()
disp('Simplex initialization...')
end
initial_point = x;
[initial_score,~,nopenalty] = feval(objective_function,x,varargin{:});
if ~nopenalty
disp('Cannot initialize the simplex with the provided initial guess.')
skipline()
error('simplex_optimization_routine:: Initial condition is wrong!')
else
[v,fv,delta] = simplex_initialization(objective_function,initial_point,initial_score,delta,zero_delta,1,varargin{:});
if verbose
disp('Done!')
skipline()
end
func_count = number_of_variables + 1;
iter_count = 1;
if verbose
disp(['Objective function value: ' num2str(fv(1))])
skipline()
end
end
vold = v;
no_improvements = 0;
simplex_init = 1;
simplex_iterations = 1;
max_simplex_algo_iterations = 3;
simplex_algo_iterations = 1;
best_point = v(:,1);
best_point_score = fv(1);
convergence = 0;
tooslow = 0;
iter_no_improvement_break = 0;
max_no_improvement_break = 1;
if verbose
disp(header)
end
critF = 1.0;
critX = 1.0;
while (func_count < max_func_calls) && (iter_count < max_iterations) && (simplex_algo_iterations<=max_simplex_algo_iterations)
% Do we really need to continue?
if critF <= max(f_tolerance,10*eps(fv(1))) && critX <= max(x_tolerance,10*eps(max(v(:,1))))
convergence = 1;
end
if critX <= x_tolerance^2 && critF>1
tooslow = 1;
end
% Set random reflection and expansion parameters if needed.
if randomize_rho
rho = -log(rand)/lambda_rho;
end
if randomize_chi
chi = -log(rand)/lambda_chi;
end
% Set random contraction and shrink parameters if needed.
if randomize_psi
psi = rand;
end
if randomize_sigma
sigma = rand;
end
% Compute the reflection point
xbar = mean(v(:,trend_vector_1),2); % Average of the n best points.
xr = xbar + rho*(xbar-v(:,end));
x = xr;
fxr = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxr < fv(1)% xr is better than previous best point v(:,1).
% Calculate the expansion point
xe = xbar + rho*chi*(xbar-v(:,end));
x = xe;
fxe = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxe < fxr% xe is even better than xr.
if optimize_expansion_parameter
% Compute optimal expansion...
xee = xbar + rho*chi*1.01*(xbar-v(:,end));
x = xee;
fxee = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxee<fxe
decrease = 1;
weight = rho*chi*1.02;
fxeee_old = fxee;
xeee_old = xee;
while decrease
weight = 1.02*weight;
xeee = xbar + weight*(xbar-v(:,end));
x = xeee;
fxeee = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if (fxeee<fxeee_old) && -(fxeee-fxeee_old)>f_tolerance*10*fxeee_old
fxeee_old = fxeee;
xeee_old = xeee;
else
decrease = 0;
end
end
xe = xeee_old;
fxe = fxeee_old;
else
decrease = 1;
weight = rho*chi;
fxeee_old = fxee;
xeee_old = xee;
while decrease
weight = weight/1.02;
xeee = xbar + weight*(xbar-v(:,end));
x = xeee;
fxeee = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if (fxeee<fxeee_old) && -(fxeee-fxeee_old)>f_tolerance*10*fxeee_old
fxeee_old = fxeee;
xeee_old = xeee;
else
decrease = 0;
end
end
xe = xeee_old;
fxe = fxeee_old;
end
move = 'expand-opt';
else
move = 'expand';
end
v(:,end) = xe;
fv(end) = fxe;
else% if xe is not better than xr.
v(:,end) = xr;
fv(end) = fxr;
move = 'reflect-1';
end
else% xr is not better than previous best point v(:,1).
if fxr < fv(number_of_variables)% xr is better than previous point v(:,n).
v(:,end) = xr;
fv(end) = fxr;
move = 'reflect-0';
else% xr is not better than previous point v(:,n).
if fxr < fv(end)% xr is better than previous worst point [=> outside contraction].
xc = (1 + psi*rho)*xbar - psi*rho*v(:,end);
x = xc;
fxc = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxc <= fxr
v(:,end) = xc;
fv(end) = fxc;
move = 'contract outside';
else
move = 'shrink';
end
else% xr is the worst point [=> inside contraction].
xcc = (1-psi)*xbar + psi*v(:,end);
x = xcc;
fxcc = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxcc < fv(end)
v(:,end) = xcc;
fv(end) = fxcc;
move = 'contract inside';
else
% perform a shrink
move = 'shrink';
end
end
if strcmp(move,'shrink')
for j=trend_vector_2
v(:,j)=v(:,1)+sigma*(v(:,j) - v(:,1));
x = v(:,j);
fv(j) = feval(objective_function,x,varargin{:});
end
func_count = func_count + number_of_variables;
end
end
end
% Sort n+1 points by incresing order of the objective function values.
[fv,sort_idx] = sort(fv);
v = v(:,sort_idx);
critF = max(abs(fv(1)-fv(trend_vector_2)));
critX = max(max(abs(v(:,trend_vector_2)-v(:,unit_vector))));
if verbose
if ~mod(simplex_iterations, 50)
skipline()
disp(header)
end
iter = int2str(simplex_iterations);
fval = int2str(func_count);
iter_(1:length(iter)) = iter;
fval_(1:length(fval)) = fval;
if isfinite(fv(end)) && isfinite(fv(1))
if fv(end)<0
disp(sprintf('%s %s %12.7E %12.7E %12.7E %12.7E %s', iter_, fval_, fv(1), fv(end), critF, critX, move))
else
if fv(1)>0
disp(sprintf('%s %s %12.7E %12.7E %12.7E %12.7E %s', iter_, fval_, fv(1), fv(end), critF, critX, move))
else
disp(sprintf('%s %s %12.7E %12.7E %12.7E %12.7E %s', iter_, fval_, fv(1), fv(end), critF, critX, move))
end
end
else
if isfinite(fv(1))
disp(sprintf(['%s %s %12.7E %12.7E %s'], iter_, fval_, fv(1) , critX, move))
else
disp(sprintf('%s %s %12.7E %s', iter_, fval_, critX, move))
end
end
end
iter_count = iter_count + 1;
simplex_iterations = simplex_iterations+1;
if abs(best_point_score-fv(1))<f_tolerance
no_improvements = no_improvements+1;
else
no_improvements = 0;
end
best_point = v(:,1);
best_point_score = fv(1);
vold = v;
if no_improvements>max_no_improvements
if verbose
skipline()
disp(['NO SIGNIFICANT IMPROVEMENT AFTER ' int2str(no_improvements) ' ITERATIONS!'])
skipline()
end
if simplex_algo_iterations<=max_simplex_algo_iterations
% Compute the size of the simplex
delta = delta*1.05;
% Compute the new initial simplex.
[v,fv,delta] = simplex_initialization(objective_function,best_point,best_point_score,delta,zero_delta,1,varargin{:});
if verbose
disp('(Re)Start with a lager simplex based on the best current values for the control variables.')
skipline()
disp(header)
end
% Reset counters
no_improvements = 0;
func_count = func_count + number_of_variables;
iter_count = iter_count+1;
iter_no_improvement_break = iter_no_improvement_break + 1;
simplex_init = simplex_init+1;
simplex_iterations = simplex_iterations+1;
end
end
if ((func_count==max_func_calls) || (iter_count==max_iterations) || (iter_no_improvement_break==max_no_improvement_break) || convergence || tooslow)
[v,fv,delta] = simplex_initialization(objective_function,best_point,best_point_score,DELTA,zero_delta,1,varargin{:});
if func_count==max_func_calls
if verbose
skipline()
disp(['MAXIMUM NUMBER OF OBJECTIVE FUNCTION CALLS EXCEEDED (' int2str(max_func_calls) ')!'])
skipline()
end
elseif iter_count== max_iterations
if verbose
skipline()
disp(['MAXIMUM NUMBER OF ITERATIONS EXCEEDED (' int2str(max_iterations) ')!'])
skipline()
end
elseif iter_no_improvement_break==max_no_improvement_break
if verbose
skipline()
disp(['MAXIMUM NUMBER OF SIMPLEX REINITIALIZATION EXCEEDED (' int2str(max_no_improvement_break) ')!'])
skipline()
end
iter_no_improvement_break = 0;
if simplex_algo_iterations==max_simplex_algo_iterations
max_no_improvements = Inf;% Do not stop until convergence is reached!
continue
end
elseif tooslow
skipline()
disp(['CONVERGENCE NOT ACHIEVED AFTER ' int2str(simplex_iterations) ' ITERATIONS! IMPROVING TOO SLOWLY!'])
skipline()
else
skipline()
disp(['CONVERGENCE ACHIEVED AFTER ' int2str(simplex_iterations) ' ITERATIONS!'])
skipline()
end
if simplex_algo_iterations<max_simplex_algo_iterations
% Compute the size of the simplex
delta = delta*1.05;
% Compute the new initial simplex.
[v,fv,delta] = simplex_initialization(objective_function,best_point,best_point_score,delta,zero_delta,1,varargin{:});
if verbose
disp('(Re)Start with a lager simplex based on the best current values for the control variables.')
skipline()
disp(header)
end
% Reset counters
func_count=0;
iter_count=0;
convergence = 0;
no_improvements = 0;
func_count = func_count + number_of_variables;
iter_count = iter_count+1;
simplex_iterations = simplex_iterations+1;
simplex_algo_iterations = simplex_algo_iterations+1;
else
break
end
end
end % while loop.
x(:) = v(:,1);
fval = fv(1);
exitflag = 1;
if func_count>= max_func_calls
disp_verbose('Maximum number of objective function calls has been exceeded!',verbose)
exitflag = 0;
end
if iter_count>= max_iterations
disp_verbose('Maximum number of iterations has been exceeded!',verbose)
exitflag = 0;
end
function [v,fv,delta] = simplex_initialization(objective_function,point,point_score,delta,zero_delta,check_delta,varargin)
n = length(point);
v = zeros(n,n+1);
v(:,1) = point;
fv = zeros(n+1,1);
fv(1) = point_score;
if length(delta)==1
delta = repmat(delta,n,1);
end
for j = 1:n
y = point;
if y(j) ~= 0
y(j) = (1 + delta(j))*y(j);
else
y(j) = zero_delta;
end
v(:,j+1) = y;
x = y;
[fv(j+1),~,nopenalty_flag] = feval(objective_function,x,varargin{:});
if check_delta
while ~nopenalty_flag
if y(j)~=0
delta(j) = delta(j)/1.1;
else
zero_delta = zero_delta/1.1;
end
y = point;
if y(j) ~= 0
y(j) = (1 + delta(j))*y(j);
else
y(j) = zero_delta;
end
v(:,j+1) = y;
x = y;
[fv(j+1),~,nopenalty_flag] = feval(objective_function,x,varargin{:});
end
end
end
% Sort by increasing order of the objective function values.
[fv,sort_idx] = sort(fv);
v = v(:,sort_idx);