dynare/mex/sources/libslicot/SG03AD.f

640 lines
23 KiB
Fortran

SUBROUTINE SG03AD( DICO, JOB, FACT, TRANS, UPLO, N, A, LDA, E,
$ LDE, Q, LDQ, Z, LDZ, X, LDX, SCALE, SEP, FERR,
$ ALPHAR, ALPHAI, BETA, IWORK, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X either the generalized continuous-time Lyapunov
C equation
C
C T T
C op(A) X op(E) + op(E) X op(A) = SCALE * Y, (1)
C
C or the generalized discrete-time Lyapunov equation
C
C T T
C op(A) X op(A) - op(E) X op(E) = SCALE * Y, (2)
C
C where op(M) is either M or M**T for M = A, E and the right hand
C side Y is symmetric. A, E, Y, and the solution X are N-by-N
C matrices. SCALE is an output scale factor, set to avoid overflow
C in X.
C
C Estimates of the separation and the relative forward error norm
C are provided.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies which type of the equation is considered:
C = 'C': Continuous-time equation (1);
C = 'D': Discrete-time equation (2).
C
C JOB CHARACTER*1
C Specifies if the solution is to be computed and if the
C separation is to be estimated:
C = 'X': Compute the solution only;
C = 'S': Estimate the separation only;
C = 'B': Compute the solution and estimate the separation.
C
C FACT CHARACTER*1
C Specifies whether the generalized real Schur
C factorization of the pencil A - lambda * E is supplied
C on entry or not:
C = 'N': Factorization is not supplied;
C = 'F': Factorization is supplied.
C
C TRANS CHARACTER*1
C Specifies whether the transposed equation is to be solved
C or not:
C = 'N': op(A) = A, op(E) = E;
C = 'T': op(A) = A**T, op(E) = E**T.
C
C UPLO CHARACTER*1
C Specifies whether the lower or the upper triangle of the
C array X is needed on input:
C = 'L': Only the lower triangle is needed on input;
C = 'U': Only the upper triangle is needed on input.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, if FACT = 'F', then the leading N-by-N upper
C Hessenberg part of this array must contain the
C generalized Schur factor A_s of the matrix A (see
C definition (3) in section METHOD). A_s must be an upper
C quasitriangular matrix. The elements below the upper
C Hessenberg part of the array A are not referenced.
C If FACT = 'N', then the leading N-by-N part of this
C array must contain the matrix A.
C On exit, the leading N-by-N part of this array contains
C the generalized Schur factor A_s of the matrix A. (A_s is
C an upper quasitriangular matrix.)
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C On entry, if FACT = 'F', then the leading N-by-N upper
C triangular part of this array must contain the
C generalized Schur factor E_s of the matrix E (see
C definition (4) in section METHOD). The elements below the
C upper triangular part of the array E are not referenced.
C If FACT = 'N', then the leading N-by-N part of this
C array must contain the coefficient matrix E of the
C equation.
C On exit, the leading N-by-N part of this array contains
C the generalized Schur factor E_s of the matrix E. (E_s is
C an upper triangular matrix.)
C
C LDE INTEGER
C The leading dimension of the array E. LDE >= MAX(1,N).
C
C Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C On entry, if FACT = 'F', then the leading N-by-N part of
C this array must contain the orthogonal matrix Q from
C the generalized Schur factorization (see definitions (3)
C and (4) in section METHOD).
C If FACT = 'N', Q need not be set on entry.
C On exit, the leading N-by-N part of this array contains
C the orthogonal matrix Q from the generalized Schur
C factorization.
C
C LDQ INTEGER
C The leading dimension of the array Q. LDQ >= MAX(1,N).
C
C Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C On entry, if FACT = 'F', then the leading N-by-N part of
C this array must contain the orthogonal matrix Z from
C the generalized Schur factorization (see definitions (3)
C and (4) in section METHOD).
C If FACT = 'N', Z need not be set on entry.
C On exit, the leading N-by-N part of this array contains
C the orthogonal matrix Z from the generalized Schur
C factorization.
C
C LDZ INTEGER
C The leading dimension of the array Z. LDZ >= MAX(1,N).
C
C X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C On entry, if JOB = 'B' or 'X', then the leading N-by-N
C part of this array must contain the right hand side matrix
C Y of the equation. Either the lower or the upper
C triangular part of this array is needed (see mode
C parameter UPLO).
C If JOB = 'S', X is not referenced.
C On exit, if JOB = 'B' or 'X', and INFO = 0, 3, or 4, then
C the leading N-by-N part of this array contains the
C solution matrix X of the equation.
C If JOB = 'S', X is not referenced.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= MAX(1,N).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor set to avoid overflow in X.
C (0 < SCALE <= 1)
C
C SEP (output) DOUBLE PRECISION
C If JOB = 'S' or JOB = 'B', and INFO = 0, 3, or 4, then
C SEP contains an estimate of the separation of the
C Lyapunov operator.
C
C FERR (output) DOUBLE PRECISION
C If JOB = 'B', and INFO = 0, 3, or 4, then FERR contains an
C estimated forward error bound for the solution X. If XTRUE
C is the true solution, FERR estimates the relative error
C in the computed solution, measured in the Frobenius norm:
C norm(X - XTRUE) / norm(XTRUE)
C
C ALPHAR (output) DOUBLE PRECISION array, dimension (N)
C ALPHAI (output) DOUBLE PRECISION array, dimension (N)
C BETA (output) DOUBLE PRECISION array, dimension (N)
C If FACT = 'N' and INFO = 0, 3, or 4, then
C (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, are the
C eigenvalues of the matrix pencil A - lambda * E.
C If FACT = 'F', ALPHAR, ALPHAI, and BETA are not
C referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (N**2)
C IWORK is not referenced if JOB = 'X'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. The following table
C contains the minimal work space requirements depending
C on the choice of JOB and FACT.
C
C JOB FACT | LDWORK
C -------------------+-------------------
C 'X' 'F' | MAX(1,N)
C 'X' 'N' | MAX(1,4*N)
C 'B', 'S' 'F' | MAX(1,2*N**2)
C 'B', 'S' 'N' | MAX(1,2*N**2,4*N)
C
C For optimum performance, LDWORK should be larger.
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: FACT = 'F' and the matrix contained in the upper
C Hessenberg part of the array A is not in upper
C quasitriangular form;
C = 2: FACT = 'N' and the pencil A - lambda * E cannot be
C reduced to generalized Schur form: LAPACK routine
C DGEGS has failed to converge;
C = 3: DICO = 'D' and the pencil A - lambda * E has a
C pair of reciprocal eigenvalues. That is, lambda_i =
C 1/lambda_j for some i and j, where lambda_i and
C lambda_j are eigenvalues of A - lambda * E. Hence,
C equation (2) is singular; perturbed values were
C used to solve the equation (but the matrices A and
C E are unchanged);
C = 4: DICO = 'C' and the pencil A - lambda * E has a
C degenerate pair of eigenvalues. That is, lambda_i =
C -lambda_j for some i and j, where lambda_i and
C lambda_j are eigenvalues of A - lambda * E. Hence,
C equation (1) is singular; perturbed values were
C used to solve the equation (but the matrices A and
C E are unchanged).
C
C METHOD
C
C A straightforward generalization [3] of the method proposed by
C Bartels and Stewart [1] is utilized to solve (1) or (2).
C
C First the pencil A - lambda * E is reduced to real generalized
C Schur form A_s - lambda * E_s by means of orthogonal
C transformations (QZ-algorithm):
C
C A_s = Q**T * A * Z (upper quasitriangular) (3)
C
C E_s = Q**T * E * Z (upper triangular). (4)
C
C If FACT = 'F', this step is omitted. Assuming SCALE = 1 and
C defining
C
C ( Z**T * Y * Z : TRANS = 'N'
C Y_s = <
C ( Q**T * Y * Q : TRANS = 'T'
C
C
C ( Q**T * X * Q if TRANS = 'N'
C X_s = < (5)
C ( Z**T * X * Z if TRANS = 'T'
C
C leads to the reduced Lyapunov equation
C
C T T
C op(A_s) X_s op(E_s) + op(E_s) X_s op(A_s) = Y_s, (6)
C
C or
C T T
C op(A_s) X_s op(A_s) - op(E_s) X_s op(E_s) = Y_s, (7)
C
C which are equivalent to (1) or (2), respectively. The solution X_s
C of (6) or (7) is computed via block back substitution (if TRANS =
C 'N') or block forward substitution (if TRANS = 'T'), where the
C block order is at most 2. (See [1] and [3] for details.)
C Equation (5) yields the solution matrix X.
C
C For fast computation the estimates of the separation and the
C forward error are gained from (6) or (7) rather than (1) or
C (2), respectively. We consider (6) and (7) as special cases of the
C generalized Sylvester equation
C
C R * X * S + U * X * V = Y, (8)
C
C whose separation is defined as follows
C
C sep = sep(R,S,U,V) = min || R * X * S + U * X * V || .
C ||X|| = 1 F
C F
C
C Equation (8) is equivalent to the system of linear equations
C
C K * vec(X) = (kron(S**T,R) + kron(V**T,U)) * vec(X) = vec(Y),
C
C where kron is the Kronecker product of two matrices and vec
C is the mapping that stacks the columns of a matrix. If K is
C nonsingular then
C
C sep = 1 / ||K**(-1)|| .
C 2
C
C We estimate ||K**(-1)|| by a method devised by Higham [2]. Note
C that this method yields an estimation for the 1-norm but we use it
C as an approximation for the 2-norm. Estimates for the forward
C error norm are provided by
C
C FERR = 2 * EPS * ||A_s|| * ||E_s|| / sep
C F F
C
C in the continuous-time case (1) and
C
C FERR = EPS * ( ||A_s|| **2 + ||E_s|| **2 ) / sep
C F F
C
C in the discrete-time case (2).
C The reciprocal condition number, RCOND, of the Lyapunov equation
C can be estimated by FERR/EPS.
C
C REFERENCES
C
C [1] Bartels, R.H., Stewart, G.W.
C Solution of the equation A X + X B = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [2] Higham, N.J.
C FORTRAN codes for estimating the one-norm of a real or complex
C matrix, with applications to condition estimation.
C A.C.M. Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, 1988.
C
C [3] Penzl, T.
C Numerical solution of generalized Lyapunov equations.
C Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C NUMERICAL ASPECTS
C
C The number of flops required by the routine is given by the
C following table. Note that we count a single floating point
C arithmetic operation as one flop. c is an integer number of modest
C size (say 4 or 5).
C
C | FACT = 'F' FACT = 'N'
C -----------+------------------------------------------
C JOB = 'B' | (26+8*c)/3 * N**3 (224+8*c)/3 * N**3
C JOB = 'S' | 8*c/3 * N**3 (198+8*c)/3 * N**3
C JOB = 'X' | 26/3 * N**3 224/3 * N**3
C
C The algorithm is backward stable if the eigenvalues of the pencil
C A - lambda * E are real. Otherwise, linear systems of order at
C most 4 are involved into the computation. These systems are solved
C by Gauss elimination with complete pivoting. The loss of stability
C of the Gauss elimination with complete pivoting is rarely
C encountered in practice.
C
C The Lyapunov equation may be very ill-conditioned. In particular,
C if DICO = 'D' and the pencil A - lambda * E has a pair of almost
C reciprocal eigenvalues, or DICO = 'C' and the pencil has an almost
C degenerate pair of eigenvalues, then the Lyapunov equation will be
C ill-conditioned. Perturbed values were used to solve the equation.
C Ill-conditioning can be detected by a very small value of the
C reciprocal condition number RCOND.
C
C CONTRIBUTOR
C
C T. Penzl, Technical University Chemnitz, Germany, Aug. 1998.
C
C REVISIONS
C
C Sep. 1998 (V. Sima).
C Dec. 1998 (V. Sima).
C
C KEYWORDS
C
C Lyapunov equation
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, TWO, ZERO
PARAMETER ( ONE = 1.0D+0, TWO = 2.0D+0, ZERO = 0.0D+0 )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, JOB, TRANS, UPLO
DOUBLE PRECISION FERR, SCALE, SEP
INTEGER INFO, LDA, LDE, LDQ, LDWORK, LDX, LDZ, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), ALPHAI(*), ALPHAR(*), BETA(*),
$ DWORK(*), E(LDE,*), Q(LDQ,*), X(LDX,*),
$ Z(LDZ,*)
INTEGER IWORK(*)
C .. Local Scalars ..
CHARACTER ETRANS
DOUBLE PRECISION EST, EPS, NORMA, NORME, SCALE1
INTEGER I, INFO1, KASE, MINWRK, OPTWRK
LOGICAL ISDISC, ISFACT, ISTRAN, ISUPPR, WANTBH, WANTSP,
$ WANTX
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DNRM2
LOGICAL LSAME
EXTERNAL DLAMCH, DNRM2, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEGS, DLACON, MB01RD, MB01RW, SG03AX,
$ SG03AY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN
C .. Executable Statements ..
C
C Decode input parameters.
C
ISDISC = LSAME( DICO, 'D' )
WANTX = LSAME( JOB, 'X' )
WANTSP = LSAME( JOB, 'S' )
WANTBH = LSAME( JOB, 'B' )
ISFACT = LSAME( FACT, 'F' )
ISTRAN = LSAME( TRANS, 'T' )
ISUPPR = LSAME( UPLO, 'U' )
C
C Check the scalar input parameters.
C
IF ( .NOT.( ISDISC .OR. LSAME( DICO, 'C' ) ) ) THEN
INFO = -1
ELSEIF ( .NOT.( WANTX .OR. WANTSP .OR. WANTBH ) ) THEN
INFO = -2
ELSEIF ( .NOT.( ISFACT .OR. LSAME( FACT, 'N' ) ) ) THEN
INFO = -3
ELSEIF ( .NOT.( ISTRAN .OR. LSAME( TRANS, 'N' ) ) ) THEN
INFO = -4
ELSEIF ( .NOT.( ISUPPR .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -5
ELSEIF ( N .LT. 0 ) THEN
INFO = -6
ELSEIF ( LDA .LT. MAX( 1, N ) ) THEN
INFO = -8
ELSEIF ( LDE .LT. MAX( 1, N ) ) THEN
INFO = -10
ELSEIF ( LDQ .LT. MAX( 1, N ) ) THEN
INFO = -12
ELSEIF ( LDZ .LT. MAX( 1, N ) ) THEN
INFO = -14
ELSEIF ( LDX .LT. MAX( 1, N ) ) THEN
INFO = -16
ELSE
INFO = 0
END IF
IF ( INFO .EQ. 0 ) THEN
C
C Compute minimal workspace.
C
IF ( WANTX ) THEN
IF ( ISFACT ) THEN
MINWRK = MAX( N, 1 )
ELSE
MINWRK = MAX( 4*N, 1 )
END IF
ELSE
IF ( ISFACT ) THEN
MINWRK = MAX( 2*N*N, 1 )
ELSE
MINWRK = MAX( 2*N*N, 4*N, 1 )
END IF
END IF
IF ( MINWRK .GT. LDWORK ) THEN
INFO = -25
END IF
END IF
IF ( INFO .NE. 0 ) THEN
CALL XERBLA( 'SG03AD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N .EQ. 0 ) THEN
SCALE = ONE
IF ( .NOT.WANTX ) SEP = ZERO
IF ( WANTBH ) FERR = ZERO
DWORK(1) = ONE
RETURN
END IF
C
IF ( ISFACT ) THEN
C
C Make sure the upper Hessenberg part of A is quasitriangular.
C
DO 20 I = 1, N-2
IF ( A(I+1,I).NE.ZERO .AND. A(I+2,I+1).NE.ZERO ) THEN
INFO = 1
RETURN
END IF
20 CONTINUE
END IF
C
IF ( .NOT.ISFACT ) THEN
C
C Reduce A - lambda * E to generalized Schur form.
C
C A := Q**T * A * Z (upper quasitriangular)
C E := Q**T * E * Z (upper triangular)
C
C ( Workspace: >= MAX(1,4*N) )
C
CALL DGEGS( 'Vectors', 'Vectors', N, A, LDA, E, LDE, ALPHAR,
$ ALPHAI, BETA, Q, LDQ, Z, LDZ, DWORK, LDWORK,
$ INFO1 )
IF ( INFO1 .NE. 0 ) THEN
INFO = 2
RETURN
END IF
OPTWRK = INT( DWORK(1) )
ELSE
OPTWRK = MINWRK
END IF
C
IF ( WANTBH .OR. WANTX ) THEN
C
C Transform right hand side.
C
C X := Z**T * X * Z or X := Q**T * X * Q
C
C Use BLAS 3 if there is enough workspace. Otherwise, use BLAS 2.
C
C ( Workspace: >= N )
C
IF ( LDWORK .LT. N*N ) THEN
IF ( ISTRAN ) THEN
CALL MB01RW( UPLO, 'Transpose', N, N, X, LDX, Q, LDQ,
$ DWORK, INFO1 )
ELSE
CALL MB01RW( UPLO, 'Transpose', N, N, X, LDX, Z, LDZ,
$ DWORK, INFO1 )
END IF
ELSE
IF ( ISTRAN ) THEN
CALL MB01RD( UPLO, 'Transpose', N, N, ZERO, ONE, X, LDX,
$ Q, LDQ, X, LDX, DWORK, LDWORK, INFO )
ELSE
CALL MB01RD( UPLO, 'Transpose', N, N, ZERO, ONE, X, LDX,
$ Z, LDZ, X, LDX, DWORK, LDWORK, INFO )
END IF
END IF
IF ( .NOT.ISUPPR ) THEN
DO 40 I = 1, N-1
CALL DCOPY( N-I, X(I+1,I), 1, X(I,I+1), LDX )
40 CONTINUE
END IF
OPTWRK = MAX( OPTWRK, N*N )
C
C Solve reduced generalized Lyapunov equation.
C
IF ( ISDISC ) THEN
CALL SG03AX( TRANS, N, A, LDA, E, LDE, X, LDX, SCALE, INFO1)
IF ( INFO1 .NE. 0 )
$ INFO = 3
ELSE
CALL SG03AY( TRANS, N, A, LDA, E, LDE, X, LDX, SCALE, INFO1)
IF ( INFO1 .NE. 0 )
$ INFO = 4
END IF
C
C Transform the solution matrix back.
C
C X := Q * X * Q**T or X := Z * X * Z**T.
C
C Use BLAS 3 if there is enough workspace. Otherwise, use BLAS 2.
C
C ( Workspace: >= N )
C
IF ( LDWORK .LT. N*N ) THEN
IF ( ISTRAN ) THEN
CALL MB01RW( 'Upper', 'NoTranspose', N, N, X, LDX, Z,
$ LDZ, DWORK, INFO1 )
ELSE
CALL MB01RW( 'Upper', 'NoTranspose', N, N, X, LDX, Q,
$ LDQ, DWORK, INFO1 )
END IF
ELSE
IF ( ISTRAN ) THEN
CALL MB01RD( 'Upper', 'NoTranspose', N, N, ZERO, ONE, X,
$ LDX, Z, LDZ, X, LDX, DWORK, LDWORK, INFO )
ELSE
CALL MB01RD( 'Upper', 'NoTranspose', N, N, ZERO, ONE, X,
$ LDX, Q, LDQ, X, LDX, DWORK, LDWORK, INFO )
END IF
END IF
DO 60 I = 1, N-1
CALL DCOPY( N-I, X(I,I+1), LDX, X(I+1,I), 1 )
60 CONTINUE
END IF
C
IF ( WANTBH .OR. WANTSP ) THEN
C
C Estimate the 1-norm of the inverse Kronecker product matrix
C belonging to the reduced generalized Lyapunov equation.
C
C ( Workspace: 2*N*N )
C
EST = ZERO
KASE = 0
80 CONTINUE
CALL DLACON( N*N, DWORK(N*N+1), DWORK, IWORK, EST, KASE )
IF ( KASE .NE. 0 ) THEN
IF ( ( KASE.EQ.1 .AND. .NOT.ISTRAN ) .OR.
$ ( KASE.NE.1 .AND. ISTRAN ) ) THEN
ETRANS = 'N'
ELSE
ETRANS = 'T'
END IF
IF ( ISDISC ) THEN
CALL SG03AX( ETRANS, N, A, LDA, E, LDE, DWORK, N, SCALE1,
$ INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 3
ELSE
CALL SG03AY( ETRANS, N, A, LDA, E, LDE, DWORK, N, SCALE1,
$ INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 4
END IF
GOTO 80
END IF
SEP = SCALE1/EST
END IF
C
C Estimate the relative forward error.
C
C ( Workspace: 2*N )
C
IF ( WANTBH ) THEN
EPS = DLAMCH( 'Precision' )
DO 100 I = 1, N
DWORK(I) = DNRM2( MIN( I+1, N ), A(1,I), 1 )
DWORK(N+I) = DNRM2( I, E(1,I), 1 )
100 CONTINUE
NORMA = DNRM2( N, DWORK, 1 )
NORME = DNRM2( N, DWORK(N+1), 1 )
IF ( ISDISC ) THEN
FERR = ( NORMA**2 + NORME**2 )*EPS/SEP
ELSE
FERR = TWO*NORMA*NORME*EPS/SEP
END IF
END IF
C
DWORK(1) = DBLE( MAX( OPTWRK, MINWRK ) )
RETURN
C *** Last line of SG03AD ***
END