dynare/mex/sources/libslicot/SB03MU.f

468 lines
15 KiB
Fortran

SUBROUTINE SB03MU( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
$ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for the N1-by-N2 matrix X, 1 <= N1,N2 <= 2, in
C
C ISGN*op(TL)*X*op(TR) - X = SCALE*B,
C
C where TL is N1-by-N1, TR is N2-by-N2, B is N1-by-N2, and ISGN = 1
C or -1. op(T) = T or T', where T' denotes the transpose of T.
C
C ARGUMENTS
C
C Mode Parameters
C
C LTRANL LOGICAL
C Specifies the form of op(TL) to be used, as follows:
C = .FALSE.: op(TL) = TL,
C = .TRUE. : op(TL) = TL'.
C
C LTRANR LOGICAL
C Specifies the form of op(TR) to be used, as follows:
C = .FALSE.: op(TR) = TR,
C = .TRUE. : op(TR) = TR'.
C
C ISGN INTEGER
C Specifies the sign of the equation as described before.
C ISGN may only be 1 or -1.
C
C Input/Output Parameters
C
C N1 (input) INTEGER
C The order of matrix TL. N1 may only be 0, 1 or 2.
C
C N2 (input) INTEGER
C The order of matrix TR. N2 may only be 0, 1 or 2.
C
C TL (input) DOUBLE PRECISION array, dimension (LDTL,2)
C The leading N1-by-N1 part of this array must contain the
C matrix TL.
C
C LDTL INTEGER
C The leading dimension of array TL. LDTL >= MAX(1,N1).
C
C TR (input) DOUBLE PRECISION array, dimension (LDTR,2)
C The leading N2-by-N2 part of this array must contain the
C matrix TR.
C
C LDTR INTEGER
C The leading dimension of array TR. LDTR >= MAX(1,N2).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,2)
C The leading N1-by-N2 part of this array must contain the
C right-hand side of the equation.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N1).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor. SCALE is chosen less than or equal to 1
C to prevent the solution overflowing.
C
C X (output) DOUBLE PRECISION array, dimension (LDX,N2)
C The leading N1-by-N2 part of this array contains the
C solution of the equation.
C Note that X may be identified with B in the calling
C statement.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= MAX(1,N1).
C
C XNORM (output) DOUBLE PRECISION
C The infinity-norm of the solution.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: if TL and TR have almost reciprocal eigenvalues, so
C TL or TR is perturbed to get a nonsingular equation.
C
C NOTE: In the interests of speed, this routine does not
C check the inputs for errors.
C
C METHOD
C
C The equivalent linear algebraic system of equations is formed and
C solved using Gaussian elimination with complete pivoting.
C
C REFERENCES
C
C [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C Ostrouchov, S., and Sorensen, D.
C LAPACK Users' Guide: Second Edition.
C SIAM, Philadelphia, 1995.
C
C NUMERICAL ASPECTS
C
C The algorithm is stable and reliable, since Gaussian elimination
C with complete pivoting is used.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, May 1997.
C Based on DLASD2 by P. Petkov, Tech. University of Sofia, September
C 1993.
C
C REVISIONS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, May 1999.
C
C KEYWORDS
C
C Discrete-time system, Sylvester equation, matrix algebra.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF, EIGHT
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0,
$ TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
C ..
C .. Scalar Arguments ..
LOGICAL LTRANL, LTRANR
INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
DOUBLE PRECISION SCALE, XNORM
C ..
C .. Array Arguments ..
DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
$ X( LDX, * )
C ..
C .. Local Scalars ..
LOGICAL BSWAP, XSWAP
INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K
DOUBLE PRECISION BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
$ TEMP, U11, U12, U22, XMAX
C ..
C .. Local Arrays ..
LOGICAL BSWPIV( 4 ), XSWPIV( 4 )
INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
$ LOCU22( 4 )
DOUBLE PRECISION BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
C ..
C .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, IDAMAX
C ..
C .. External Subroutines ..
EXTERNAL DSWAP
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX
C ..
C .. Data statements ..
DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
$ LOCU22 / 4, 3, 2, 1 /
DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
C ..
C .. Executable Statements ..
C
C Do not check the input parameters for errors.
C
INFO = 0
SCALE = ONE
C
C Quick return if possible.
C
IF( N1.EQ.0 .OR. N2.EQ.0 ) THEN
XNORM = ZERO
RETURN
END IF
C
C Set constants to control overflow.
C
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
SGN = ISGN
C
K = N1 + N1 + N2 - 2
GO TO ( 10, 20, 30, 50 )K
C
C 1-by-1: SGN*TL11*X*TR11 - X = B11.
C
10 CONTINUE
TAU1 = SGN*TL( 1, 1 )*TR( 1, 1 ) - ONE
BET = ABS( TAU1 )
IF( BET.LE.SMLNUM ) THEN
TAU1 = SMLNUM
BET = SMLNUM
INFO = 1
END IF
C
GAM = ABS( B( 1, 1 ) )
IF( SMLNUM*GAM.GT.BET )
$ SCALE = ONE / GAM
C
X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
XNORM = ABS( X( 1, 1 ) )
RETURN
C
C 1-by-2:
C ISGN*TL11*[X11 X12]*op[TR11 TR12] = [B11 B12].
C [TR21 TR22]
C
20 CONTINUE
C
SMIN = MAX( MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
$ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
$ *ABS( TL( 1, 1 ) )*EPS,
$ SMLNUM )
TMP( 1 ) = SGN*TL( 1, 1 )*TR( 1, 1 ) - ONE
TMP( 4 ) = SGN*TL( 1, 1 )*TR( 2, 2 ) - ONE
IF( LTRANR ) THEN
TMP( 2 ) = SGN*TL( 1, 1 )*TR( 2, 1 )
TMP( 3 ) = SGN*TL( 1, 1 )*TR( 1, 2 )
ELSE
TMP( 2 ) = SGN*TL( 1, 1 )*TR( 1, 2 )
TMP( 3 ) = SGN*TL( 1, 1 )*TR( 2, 1 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 1, 2 )
GO TO 40
C
C 2-by-1:
C ISGN*op[TL11 TL12]*[X11]*TR11 = [B11].
C [TL21 TL22] [X21] [B21]
C
30 CONTINUE
SMIN = MAX( MAX( ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
$ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
$ *ABS( TR( 1, 1 ) )*EPS,
$ SMLNUM )
TMP( 1 ) = SGN*TL( 1, 1 )*TR( 1, 1 ) - ONE
TMP( 4 ) = SGN*TL( 2, 2 )*TR( 1, 1 ) - ONE
IF( LTRANL ) THEN
TMP( 2 ) = SGN*TL( 1, 2 )*TR( 1, 1 )
TMP( 3 ) = SGN*TL( 2, 1 )*TR( 1, 1 )
ELSE
TMP( 2 ) = SGN*TL( 2, 1 )*TR( 1, 1 )
TMP( 3 ) = SGN*TL( 1, 2 )*TR( 1, 1 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 2, 1 )
40 CONTINUE
C
C Solve 2-by-2 system using complete pivoting.
C Set pivots less than SMIN to SMIN.
C
IPIV = IDAMAX( 4, TMP, 1 )
U11 = TMP( IPIV )
IF( ABS( U11 ).LE.SMIN ) THEN
INFO = 1
U11 = SMIN
END IF
U12 = TMP( LOCU12( IPIV ) )
L21 = TMP( LOCL21( IPIV ) ) / U11
U22 = TMP( LOCU22( IPIV ) ) - U12*L21
XSWAP = XSWPIV( IPIV )
BSWAP = BSWPIV( IPIV )
IF( ABS( U22 ).LE.SMIN ) THEN
INFO = 1
U22 = SMIN
END IF
IF( BSWAP ) THEN
TEMP = BTMP( 2 )
BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
BTMP( 1 ) = TEMP
ELSE
BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
END IF
IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
$ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
BTMP( 1 ) = BTMP( 1 )*SCALE
BTMP( 2 ) = BTMP( 2 )*SCALE
END IF
X2( 2 ) = BTMP( 2 ) / U22
X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
IF( XSWAP ) THEN
TEMP = X2( 2 )
X2( 2 ) = X2( 1 )
X2( 1 ) = TEMP
END IF
X( 1, 1 ) = X2( 1 )
IF( N1.EQ.1 ) THEN
X( 1, 2 ) = X2( 2 )
XNORM = ABS( X2( 1 ) ) + ABS( X2( 2 ) )
ELSE
X( 2, 1 ) = X2( 2 )
XNORM = MAX( ABS( X2( 1 ) ), ABS( X2( 2 ) ) )
END IF
RETURN
C
C 2-by-2:
C ISGN*op[TL11 TL12]*[X11 X12]*op[TR11 TR12]-[X11 X12] = [B11 B12].
C [TL21 TL22] [X21 X22] [TR21 TR22] [X21 X22] [B21 B22]
C
C Solve equivalent 4-by-4 system using complete pivoting.
C Set pivots less than SMIN to SMIN.
C
50 CONTINUE
SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
$ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
SMIN = MAX( ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
$ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )*SMIN
SMIN = MAX( EPS*SMIN, SMLNUM )
T16( 1, 1 ) = SGN*TL( 1, 1 )*TR( 1, 1 ) - ONE
T16( 2, 2 ) = SGN*TL( 2, 2 )*TR( 1, 1 ) - ONE
T16( 3, 3 ) = SGN*TL( 1, 1 )*TR( 2, 2 ) - ONE
T16( 4, 4 ) = SGN*TL( 2, 2 )*TR( 2, 2 ) - ONE
IF( LTRANL ) THEN
T16( 1, 2 ) = SGN*TL( 2, 1 )*TR( 1, 1 )
T16( 2, 1 ) = SGN*TL( 1, 2 )*TR( 1, 1 )
T16( 3, 4 ) = SGN*TL( 2, 1 )*TR( 2, 2 )
T16( 4, 3 ) = SGN*TL( 1, 2 )*TR( 2, 2 )
ELSE
T16( 1, 2 ) = SGN*TL( 1, 2 )*TR( 1, 1 )
T16( 2, 1 ) = SGN*TL( 2, 1 )*TR( 1, 1 )
T16( 3, 4 ) = SGN*TL( 1, 2 )*TR( 2, 2 )
T16( 4, 3 ) = SGN*TL( 2, 1 )*TR( 2, 2 )
END IF
IF( LTRANR ) THEN
T16( 1, 3 ) = SGN*TL( 1, 1 )*TR( 1, 2 )
T16( 2, 4 ) = SGN*TL( 2, 2 )*TR( 1, 2 )
T16( 3, 1 ) = SGN*TL( 1, 1 )*TR( 2, 1 )
T16( 4, 2 ) = SGN*TL( 2, 2 )*TR( 2, 1 )
ELSE
T16( 1, 3 ) = SGN*TL( 1, 1 )*TR( 2, 1 )
T16( 2, 4 ) = SGN*TL( 2, 2 )*TR( 2, 1 )
T16( 3, 1 ) = SGN*TL( 1, 1 )*TR( 1, 2 )
T16( 4, 2 ) = SGN*TL( 2, 2 )*TR( 1, 2 )
END IF
IF( LTRANL .AND. LTRANR ) THEN
T16( 1, 4 ) = SGN*TL( 2, 1 )*TR( 1, 2 )
T16( 2, 3 ) = SGN*TL( 1, 2 )*TR( 1, 2 )
T16( 3, 2 ) = SGN*TL( 2, 1 )*TR( 2, 1 )
T16( 4, 1 ) = SGN*TL( 1, 2 )*TR( 2, 1 )
ELSE IF( LTRANL .AND. .NOT.LTRANR ) THEN
T16( 1, 4 ) = SGN*TL( 2, 1 )*TR( 2, 1 )
T16( 2, 3 ) = SGN*TL( 1, 2 )*TR( 2, 1 )
T16( 3, 2 ) = SGN*TL( 2, 1 )*TR( 1, 2 )
T16( 4, 1 ) = SGN*TL( 1, 2 )*TR( 1, 2 )
ELSE IF( .NOT.LTRANL .AND. LTRANR ) THEN
T16( 1, 4 ) = SGN*TL( 1, 2 )*TR( 1, 2 )
T16( 2, 3 ) = SGN*TL( 2, 1 )*TR( 1, 2 )
T16( 3, 2 ) = SGN*TL( 1, 2 )*TR( 2, 1 )
T16( 4, 1 ) = SGN*TL( 2, 1 )*TR( 2, 1 )
ELSE
T16( 1, 4 ) = SGN*TL( 1, 2 )*TR( 2, 1 )
T16( 2, 3 ) = SGN*TL( 2, 1 )*TR( 2, 1 )
T16( 3, 2 ) = SGN*TL( 1, 2 )*TR( 1, 2 )
T16( 4, 1 ) = SGN*TL( 2, 1 )*TR( 1, 2 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 2, 1 )
BTMP( 3 ) = B( 1, 2 )
BTMP( 4 ) = B( 2, 2 )
C
C Perform elimination
C
DO 100 I = 1, 3
XMAX = ZERO
C
DO 70 IP = I, 4
C
DO 60 JP = I, 4
IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
XMAX = ABS( T16( IP, JP ) )
IPSV = IP
JPSV = JP
END IF
60 CONTINUE
C
70 CONTINUE
C
IF( IPSV.NE.I ) THEN
CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
TEMP = BTMP( I )
BTMP( I ) = BTMP( IPSV )
BTMP( IPSV ) = TEMP
END IF
IF( JPSV.NE.I )
$ CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
JPIV( I ) = JPSV
IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
INFO = 1
T16( I, I ) = SMIN
END IF
C
DO 90 J = I + 1, 4
T16( J, I ) = T16( J, I ) / T16( I, I )
BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
C
DO 80 K = I + 1, 4
T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
80 CONTINUE
C
90 CONTINUE
C
100 CONTINUE
C
IF( ABS( T16( 4, 4 ) ).LT.SMIN )
$ T16( 4, 4 ) = SMIN
IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
$ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ),
$ ABS( BTMP( 4 ) ) )
BTMP( 1 ) = BTMP( 1 )*SCALE
BTMP( 2 ) = BTMP( 2 )*SCALE
BTMP( 3 ) = BTMP( 3 )*SCALE
BTMP( 4 ) = BTMP( 4 )*SCALE
END IF
C
DO 120 I = 1, 4
K = 5 - I
TEMP = ONE / T16( K, K )
TMP( K ) = BTMP( K )*TEMP
C
DO 110 J = K + 1, 4
TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
110 CONTINUE
C
120 CONTINUE
C
DO 130 I = 1, 3
IF( JPIV( 4-I ).NE.4-I ) THEN
TEMP = TMP( 4-I )
TMP( 4-I ) = TMP( JPIV( 4-I ) )
TMP( JPIV( 4-I ) ) = TEMP
END IF
130 CONTINUE
C
X( 1, 1 ) = TMP( 1 )
X( 2, 1 ) = TMP( 2 )
X( 1, 2 ) = TMP( 3 )
X( 2, 2 ) = TMP( 4 )
XNORM = MAX( ABS( TMP( 1 ) ) + ABS( TMP( 3 ) ),
$ ABS( TMP( 2 ) ) + ABS( TMP( 4 ) ) )
C
RETURN
C *** Last line of SB03MU ***
END