dynare/mex/sources/libslicot/SB02QD.f

805 lines
28 KiB
Fortran

SUBROUTINE SB02QD( JOB, FACT, TRANA, UPLO, LYAPUN, N, A, LDA, T,
$ LDT, U, LDU, G, LDG, Q, LDQ, X, LDX, SEP,
$ RCOND, FERR, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To estimate the conditioning and compute an error bound on the
C solution of the real continuous-time matrix algebraic Riccati
C equation
C
C op(A)'*X + X*op(A) + Q - X*G*X = 0, (1)
C
C where op(A) = A or A' (A**T) and Q, G are symmetric (Q = Q**T,
C G = G**T). The matrices A, Q and G are N-by-N and the solution X
C is N-by-N.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the computation to be performed, as follows:
C = 'C': Compute the reciprocal condition number only;
C = 'E': Compute the error bound only;
C = 'B': Compute both the reciprocal condition number and
C the error bound.
C
C FACT CHARACTER*1
C Specifies whether or not the real Schur factorization of
C the matrix Ac = A - G*X (if TRANA = 'N') or Ac = A - X*G
C (if TRANA = 'T' or 'C') is supplied on entry, as follows:
C = 'F': On entry, T and U (if LYAPUN = 'O') contain the
C factors from the real Schur factorization of the
C matrix Ac;
C = 'N': The Schur factorization of Ac will be computed
C and the factors will be stored in T and U (if
C LYAPUN = 'O').
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C UPLO CHARACTER*1
C Specifies which part of the symmetric matrices Q and G is
C to be used, as follows:
C = 'U': Upper triangular part;
C = 'L': Lower triangular part.
C
C LYAPUN CHARACTER*1
C Specifies whether or not the original Lyapunov equations
C should be solved in the iterative estimation process,
C as follows:
C = 'O': Solve the original Lyapunov equations, updating
C the right-hand sides and solutions with the
C matrix U, e.g., RHS <-- U'*RHS*U;
C = 'R': Solve reduced Lyapunov equations only, without
C updating the right-hand sides and solutions.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, X, Q, and G. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C If FACT = 'N' or LYAPUN = 'O', the leading N-by-N part of
C this array must contain the matrix A.
C If FACT = 'F' and LYAPUN = 'R', A is not referenced.
C
C LDA INTEGER
C The leading dimension of the array A.
C LDA >= max(1,N), if FACT = 'N' or LYAPUN = 'O';
C LDA >= 1, if FACT = 'F' and LYAPUN = 'R'.
C
C T (input or output) DOUBLE PRECISION array, dimension
C (LDT,N)
C If FACT = 'F', then T is an input argument and on entry,
C the leading N-by-N upper Hessenberg part of this array
C must contain the upper quasi-triangular matrix T in Schur
C canonical form from a Schur factorization of Ac (see
C argument FACT).
C If FACT = 'N', then T is an output argument and on exit,
C if INFO = 0 or INFO = N+1, the leading N-by-N upper
C Hessenberg part of this array contains the upper quasi-
C triangular matrix T in Schur canonical form from a Schur
C factorization of Ac (see argument FACT).
C
C LDT INTEGER
C The leading dimension of the array T. LDT >= max(1,N).
C
C U (input or output) DOUBLE PRECISION array, dimension
C (LDU,N)
C If LYAPUN = 'O' and FACT = 'F', then U is an input
C argument and on entry, the leading N-by-N part of this
C array must contain the orthogonal matrix U from a real
C Schur factorization of Ac (see argument FACT).
C If LYAPUN = 'O' and FACT = 'N', then U is an output
C argument and on exit, if INFO = 0 or INFO = N+1, it
C contains the orthogonal N-by-N matrix from a real Schur
C factorization of Ac (see argument FACT).
C If LYAPUN = 'R', the array U is not referenced.
C
C LDU INTEGER
C The leading dimension of the array U.
C LDU >= 1, if LYAPUN = 'R';
C LDU >= MAX(1,N), if LYAPUN = 'O'.
C
C G (input) DOUBLE PRECISION array, dimension (LDG,N)
C If UPLO = 'U', the leading N-by-N upper triangular part of
C this array must contain the upper triangular part of the
C matrix G.
C If UPLO = 'L', the leading N-by-N lower triangular part of
C this array must contain the lower triangular part of the
C matrix G. _
C Matrix G should correspond to G in the "reduced" Riccati
C equation (with matrix T, instead of A), if LYAPUN = 'R'.
C See METHOD.
C
C LDG INTEGER
C The leading dimension of the array G. LDG >= max(1,N).
C
C Q (input) DOUBLE PRECISION array, dimension (LDQ,N)
C If UPLO = 'U', the leading N-by-N upper triangular part of
C this array must contain the upper triangular part of the
C matrix Q.
C If UPLO = 'L', the leading N-by-N lower triangular part of
C this array must contain the lower triangular part of the
C matrix Q. _
C Matrix Q should correspond to Q in the "reduced" Riccati
C equation (with matrix T, instead of A), if LYAPUN = 'R'.
C See METHOD.
C
C LDQ INTEGER
C The leading dimension of the array Q. LDQ >= max(1,N).
C
C X (input) DOUBLE PRECISION array, dimension (LDX,N)
C The leading N-by-N part of this array must contain the
C symmetric solution matrix of the original Riccati
C equation (with matrix A), if LYAPUN = 'O', or of the
C "reduced" Riccati equation (with matrix T), if
C LYAPUN = 'R'. See METHOD.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= max(1,N).
C
C SEP (output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'B', the estimated quantity
C sep(op(Ac),-op(Ac)').
C If N = 0, or X = 0, or JOB = 'E', SEP is not referenced.
C
C RCOND (output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'B', an estimate of the reciprocal
C condition number of the continuous-time Riccati equation.
C If N = 0 or X = 0, RCOND is set to 1 or 0, respectively.
C If JOB = 'E', RCOND is not referenced.
C
C FERR (output) DOUBLE PRECISION
C If JOB = 'E' or JOB = 'B', an estimated forward error
C bound for the solution X. If XTRUE is the true solution,
C FERR bounds the magnitude of the largest entry in
C (X - XTRUE) divided by the magnitude of the largest entry
C in X.
C If N = 0 or X = 0, FERR is set to 0.
C If JOB = 'C', FERR is not referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (N*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0 or INFO = N+1, DWORK(1) returns the
C optimal value of LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C Let LWA = N*N, if LYAPUN = 'O' and JOB = 'E' or 'B';
C LWA = 0, otherwise.
C If FACT = 'N', then
C LDWORK = MAX(1, 5*N, 2*N*N), if JOB = 'C';
C LDWORK = MAX(1, LWA + 5*N, 4*N*N ), if JOB = 'E', 'B'.
C If FACT = 'F', then
C LDWORK = MAX(1, 2*N*N), if JOB = 'C';
C LDWORK = MAX(1, 4*N*N ), if JOB = 'E' or 'B'.
C For good performance, LDWORK must generally be larger.
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, i <= N, the QR algorithm failed to
C complete the reduction of the matrix Ac to Schur
C canonical form (see LAPACK Library routine DGEES);
C on exit, the matrix T(i+1:N,i+1:N) contains the
C partially converged Schur form, and DWORK(i+1:N) and
C DWORK(N+i+1:2*N) contain the real and imaginary
C parts, respectively, of the converged eigenvalues;
C this error is unlikely to appear;
C = N+1: if the matrices T and -T' have common or very
C close eigenvalues; perturbed values were used to
C solve Lyapunov equations, but the matrix T, if given
C (for FACT = 'F'), is unchanged.
C
C METHOD
C
C The condition number of the Riccati equation is estimated as
C
C cond = ( norm(Theta)*norm(A) + norm(inv(Omega))*norm(Q) +
C norm(Pi)*norm(G) ) / norm(X),
C
C where Omega, Theta and Pi are linear operators defined by
C
C Omega(W) = op(Ac)'*W + W*op(Ac),
C Theta(W) = inv(Omega(op(W)'*X + X*op(W))),
C Pi(W) = inv(Omega(X*W*X)),
C
C and Ac = A - G*X (if TRANA = 'N') or Ac = A - X*G (if TRANA = 'T'
C or 'C'). Note that the Riccati equation (1) is equivalent to
C _ _ _ _ _ _
C op(T)'*X + X*op(T) + Q + X*G*X = 0, (2)
C _ _ _
C where X = U'*X*U, Q = U'*Q*U, and G = U'*G*U, with U the
C orthogonal matrix reducing Ac to a real Schur form, T = U'*Ac*U.
C
C The routine estimates the quantities
C
C sep(op(Ac),-op(Ac)') = 1 / norm(inv(Omega)),
C
C norm(Theta) and norm(Pi) using 1-norm condition estimator.
C
C The forward error bound is estimated using a practical error bound
C similar to the one proposed in [2].
C
C REFERENCES
C
C [1] Ghavimi, A.R. and Laub, A.J.
C Backward error, sensitivity, and refinement of computed
C solutions of algebraic Riccati equations.
C Numerical Linear Algebra with Applications, vol. 2, pp. 29-49,
C 1995.
C
C [2] Higham, N.J.
C Perturbation theory and backward error for AX-XB=C.
C BIT, vol. 33, pp. 124-136, 1993.
C
C [3] Petkov, P.Hr., Konstantinov, M.M., and Mehrmann, V.
C DGRSVX and DMSRIC: Fortran 77 subroutines for solving
C continuous-time matrix algebraic Riccati equations with
C condition and accuracy estimates.
C Preprint SFB393/98-16, Fak. f. Mathematik, Tech. Univ.
C Chemnitz, May 1998.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C The accuracy of the estimates obtained depends on the solution
C accuracy and on the properties of the 1-norm estimator.
C
C FURTHER COMMENTS
C
C The option LYAPUN = 'R' may occasionally produce slightly worse
C or better estimates, and it is much faster than the option 'O'.
C When SEP is computed and it is zero, the routine returns
C immediately, with RCOND and FERR (if requested) set to 0 and 1,
C respectively. In this case, the equation is singular.
C
C CONTRIBUTOR
C
C P.Hr. Petkov, Technical University of Sofia, December 1998.
C V. Sima, Katholieke Univ. Leuven, Belgium, February 1999.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 2004.
C
C KEYWORDS
C
C Conditioning, error estimates, orthogonal transformation,
C real Schur form, Riccati equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, FOUR, HALF
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ FOUR = 4.0D+0, HALF = 0.5D+0 )
C ..
C .. Scalar Arguments ..
CHARACTER FACT, JOB, LYAPUN, TRANA, UPLO
INTEGER INFO, LDA, LDG, LDQ, LDT, LDU, LDWORK, LDX, N
DOUBLE PRECISION FERR, RCOND, SEP
C ..
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), DWORK( * ), G( LDG, * ),
$ Q( LDQ, * ), T( LDT, * ), U( LDU, * ),
$ X( LDX, * )
C ..
C .. Local Scalars ..
LOGICAL JOBB, JOBC, JOBE, LOWER, NEEDAC, NOFACT,
$ NOTRNA, UPDATE
CHARACTER LOUP, SJOB, TRANAT
INTEGER I, IABS, INFO2, IRES, ITMP, IXBS, J, JJ, JX,
$ KASE, LDW, LWA, NN, SDIM, WRKOPT
DOUBLE PRECISION ANORM, BIGNUM, DENOM, EPS, EPSN, EST, GNORM,
$ PINORM, QNORM, SCALE, SIG, TEMP, THNORM, TMAX,
$ XANORM, XNORM
C ..
C .. Local Arrays ..
LOGICAL BWORK( 1 )
C ..
C .. External Functions ..
LOGICAL LSAME, SELECT
DOUBLE PRECISION DLAMCH, DLANGE, DLANHS, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANHS, DLANSY, LSAME, SELECT
C ..
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEES, DLACON, DLACPY, DSCAL,
$ DSYMM, DSYR2K, MA02ED, MB01RU, MB01UD, SB03MY,
$ SB03QX, SB03QY, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, MAX, MIN
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
JOBC = LSAME( JOB, 'C' )
JOBE = LSAME( JOB, 'E' )
JOBB = LSAME( JOB, 'B' )
NOFACT = LSAME( FACT, 'N' )
NOTRNA = LSAME( TRANA, 'N' )
LOWER = LSAME( UPLO, 'L' )
UPDATE = LSAME( LYAPUN, 'O' )
C
NEEDAC = UPDATE .AND. .NOT.JOBC
C
NN = N*N
IF( NEEDAC ) THEN
LWA = NN
ELSE
LWA = 0
END IF
C
IF( NOFACT ) THEN
IF( JOBC ) THEN
LDW = MAX( 5*N, 2*NN )
ELSE
LDW = MAX( LWA + 5*N, 4*NN )
END IF
ELSE
IF( JOBC ) THEN
LDW = 2*NN
ELSE
LDW = 4*NN
END IF
END IF
C
INFO = 0
IF( .NOT.( JOBB .OR. JOBC .OR. JOBE ) ) THEN
INFO = -1
ELSE IF( .NOT.( NOFACT .OR. LSAME( FACT, 'F' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( NOTRNA .OR. LSAME( TRANA, 'T' ) .OR.
$ LSAME( TRANA, 'C' ) ) ) THEN
INFO = -3
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -4
ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
INFO = -5
ELSE IF( N.LT.0 ) THEN
INFO = -6
ELSE IF( LDA.LT.1 .OR.
$ ( LDA.LT.N .AND. ( UPDATE .OR. NOFACT ) ) ) THEN
INFO = -8
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDU.LT.1 .OR. ( LDU.LT.N .AND. UPDATE ) ) THEN
INFO = -12
ELSE IF( LDG.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDWORK.LT.MAX( 1, LDW ) ) THEN
INFO = -24
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB02QD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
IF( .NOT.JOBE )
$ RCOND = ONE
IF( .NOT.JOBC )
$ FERR = ZERO
DWORK( 1 ) = ONE
RETURN
END IF
C
C Compute the 1-norm of the matrix X.
C
XNORM = DLANSY( '1-norm', UPLO, N, X, LDX, DWORK )
IF( XNORM.EQ.ZERO ) THEN
C
C The solution is zero.
C
IF( .NOT.JOBE )
$ RCOND = ZERO
IF( .NOT.JOBC )
$ FERR = ZERO
DWORK( 1 ) = DBLE( N )
RETURN
END IF
C
C Workspace usage.
C
IXBS = 0
ITMP = IXBS + NN
IABS = ITMP + NN
IRES = IABS + NN
C
C Workspace: LWR, where
C LWR = N*N, if LYAPUN = 'O' and JOB = 'E' or 'B', or
C FACT = 'N',
C LWR = 0, otherwise.
C
IF( NEEDAC .OR. NOFACT ) THEN
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK, N )
IF( NOTRNA ) THEN
C
C Compute Ac = A - G*X.
C
CALL DSYMM( 'Left', UPLO, N, N, -ONE, G, LDG, X, LDX, ONE,
$ DWORK, N )
ELSE
C
C Compute Ac = A - X*G.
C
CALL DSYMM( 'Right', UPLO, N, N, -ONE, G, LDG, X, LDX, ONE,
$ DWORK, N )
END IF
C
WRKOPT = DBLE( NN )
IF( NOFACT )
$ CALL DLACPY( 'Full', N, N, DWORK, N, T, LDT )
ELSE
WRKOPT = DBLE( N )
END IF
C
IF( NOFACT ) THEN
C
C Compute the Schur factorization of Ac, Ac = U*T*U'.
C Workspace: need LWA + 5*N;
C prefer larger;
C LWA = N*N, if LYAPUN = 'O' and JOB = 'E' or 'B';
C LWA = 0, otherwise.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.)
C
IF( UPDATE ) THEN
SJOB = 'V'
ELSE
SJOB = 'N'
END IF
CALL DGEES( SJOB, 'Not ordered', SELECT, N, T, LDT, SDIM,
$ DWORK( LWA+1 ), DWORK( LWA+N+1 ), U, LDU,
$ DWORK( LWA+2*N+1 ), LDWORK-LWA-2*N, BWORK, INFO )
IF( INFO.GT.0 ) THEN
IF( LWA.GT.0 )
$ CALL DCOPY( 2*N, DWORK( LWA+1 ), 1, DWORK, 1 )
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, INT( DWORK( LWA+2*N+1 ) ) + LWA + 2*N )
END IF
IF( NEEDAC )
$ CALL DLACPY( 'Full', N, N, DWORK, N, DWORK( IABS+1 ), N )
C
IF( NOTRNA ) THEN
TRANAT = 'T'
ELSE
TRANAT = 'N'
END IF
C
IF( .NOT.JOBE ) THEN
C
C Estimate sep(op(Ac),-op(Ac)') = sep(op(T),-op(T)') and
C norm(Theta).
C Workspace LWA + 2*N*N.
C
CALL SB03QY( 'Both', TRANA, LYAPUN, N, T, LDT, U, LDU, X, LDX,
$ SEP, THNORM, IWORK, DWORK, LDWORK, INFO )
C
WRKOPT = MAX( WRKOPT, LWA + 2*NN )
C
C Return if the equation is singular.
C
IF( SEP.EQ.ZERO ) THEN
RCOND = ZERO
IF( JOBB )
$ FERR = ONE
DWORK( 1 ) = DBLE( WRKOPT )
RETURN
END IF
C
C Estimate norm(Pi).
C Workspace LWA + 2*N*N.
C
KASE = 0
C
C REPEAT
10 CONTINUE
CALL DLACON( NN, DWORK( ITMP+1 ), DWORK, IWORK, EST, KASE )
IF( KASE.NE.0 ) THEN
C
C Select the triangular part of symmetric matrix to be used.
C
IF( DLANSY( '1-norm', 'Upper', N, DWORK, N, DWORK( ITMP+1 ))
$ .GE.
$ DLANSY( '1-norm', 'Lower', N, DWORK, N, DWORK( ITMP+1 ))
$ ) THEN
LOUP = 'U'
ELSE
LOUP = 'L'
END IF
C
C Compute RHS = X*W*X.
C
CALL MB01RU( LOUP, 'No Transpose', N, N, ZERO, ONE, DWORK,
$ N, X, LDX, DWORK, N, DWORK( ITMP+1 ), NN,
$ INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
C
IF( UPDATE ) THEN
C
C Transform the right-hand side: RHS := U'*RHS*U.
C
CALL MB01RU( LOUP, 'Transpose', N, N, ZERO, ONE, DWORK,
$ N, U, LDU, DWORK, N, DWORK( ITMP+1 ), NN,
$ INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
END IF
C
C Fill in the remaining triangle of the symmetric matrix.
C
CALL MA02ED( LOUP, N, DWORK, N )
C
IF( KASE.EQ.1 ) THEN
C
C Solve op(T)'*Y + Y*op(T) = scale*RHS.
C
CALL SB03MY( TRANA, N, T, LDT, DWORK, N, SCALE, INFO2 )
ELSE
C
C Solve op(T)*W + W*op(T)' = scale*RHS.
C
CALL SB03MY( TRANAT, N, T, LDT, DWORK, N, SCALE, INFO2 )
END IF
C
IF( UPDATE ) THEN
C
C Transform back to obtain the solution: Z := U*Z*U', with
C Z = Y or Z = W.
C
CALL MB01RU( LOUP, 'No transpose', N, N, ZERO, ONE,
$ DWORK, N, U, LDU, DWORK, N, DWORK( ITMP+1 ),
$ NN, INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
C
C Fill in the remaining triangle of the symmetric matrix.
C
CALL MA02ED( LOUP, N, DWORK, N )
END IF
GO TO 10
END IF
C UNTIL KASE = 0
C
IF( EST.LT.SCALE ) THEN
PINORM = EST / SCALE
ELSE
BIGNUM = ONE / DLAMCH( 'Safe minimum' )
IF( EST.LT.SCALE*BIGNUM ) THEN
PINORM = EST / SCALE
ELSE
PINORM = BIGNUM
END IF
END IF
C
C Compute the 1-norm of A or T.
C
IF( UPDATE ) THEN
ANORM = DLANGE( '1-norm', N, N, A, LDA, DWORK )
ELSE
ANORM = DLANHS( '1-norm', N, T, LDT, DWORK )
END IF
C
C Compute the 1-norms of the matrices Q and G.
C
QNORM = DLANSY( '1-norm', UPLO, N, Q, LDQ, DWORK )
GNORM = DLANSY( '1-norm', UPLO, N, G, LDG, DWORK )
C
C Estimate the reciprocal condition number.
C
TMAX = MAX( SEP, XNORM, ANORM, GNORM )
IF( TMAX.LE.ONE ) THEN
TEMP = SEP*XNORM
DENOM = QNORM + ( SEP*ANORM )*THNORM +
$ ( SEP*GNORM )*PINORM
ELSE
TEMP = ( SEP / TMAX )*( XNORM / TMAX )
DENOM = ( ( ONE / TMAX )*( QNORM / TMAX ) ) +
$ ( ( SEP / TMAX )*( ANORM / TMAX ) )*THNORM +
$ ( ( SEP / TMAX )*( GNORM / TMAX ) )*PINORM
END IF
IF( TEMP.GE.DENOM ) THEN
RCOND = ONE
ELSE
RCOND = TEMP / DENOM
END IF
END IF
C
IF( .NOT.JOBC ) THEN
C
C Form a triangle of the residual matrix
C R = op(A)'*X + X*op(A) + Q - X*G*X,
C or _ _ _ _ _ _
C R = op(T)'*X + X*op(T) + Q + X*G*X,
C exploiting the symmetry.
C Workspace 4*N*N.
C
IF( UPDATE ) THEN
CALL DLACPY( UPLO, N, N, Q, LDQ, DWORK( IRES+1 ), N )
CALL DSYR2K( UPLO, TRANAT, N, N, ONE, A, LDA, X, LDX, ONE,
$ DWORK( IRES+1 ), N )
SIG = -ONE
ELSE
CALL MB01UD( 'Right', TRANA, N, N, ONE, T, LDT, X, LDX,
$ DWORK( IRES+1 ), N, INFO2 )
JJ = IRES + 1
IF( LOWER ) THEN
DO 20 J = 1, N
CALL DAXPY( N-J+1, ONE, DWORK( JJ ), N, DWORK( JJ ),
$ 1 )
CALL DAXPY( N-J+1, ONE, Q( J, J ), 1, DWORK( JJ ), 1 )
JJ = JJ + N + 1
20 CONTINUE
ELSE
DO 30 J = 1, N
CALL DAXPY( J, ONE, DWORK( IRES+J ), N, DWORK( JJ ),
$ 1 )
CALL DAXPY( J, ONE, Q( 1, J ), 1, DWORK( JJ ), 1 )
JJ = JJ + N
30 CONTINUE
END IF
SIG = ONE
END IF
CALL MB01RU( UPLO, TRANAT, N, N, ONE, SIG, DWORK( IRES+1 ),
$ N, X, LDX, G, LDG, DWORK( ITMP+1 ), NN, INFO2 )
C
C Get the machine precision.
C
EPS = DLAMCH( 'Epsilon' )
EPSN = EPS*DBLE( N + 4 )
TEMP = EPS*FOUR
C
C Add to abs(R) a term that takes account of rounding errors in
C forming R:
C abs(R) := abs(R) + EPS*(4*abs(Q) + (n+4)*(abs(op(Ac))'*abs(X)
C + abs(X)*abs(op(Ac))) + 2*(n+1)*abs(X)*abs(G)*abs(X)),
C or _ _
C abs(R) := abs(R) + EPS*(4*abs(Q) + (n+4)*(abs(op(T))'*abs(X)
C _ _ _ _
C + abs(X)*abs(op(T))) + 2*(n+1)*abs(X)*abs(G)*abs(X)),
C where EPS is the machine precision.
C
DO 50 J = 1, N
DO 40 I = 1, N
DWORK( IXBS+(J-1)*N+I ) = ABS( X( I, J ) )
40 CONTINUE
50 CONTINUE
C
IF( LOWER ) THEN
DO 70 J = 1, N
DO 60 I = J, N
DWORK( IRES+(J-1)*N+I ) = TEMP*ABS( Q( I, J ) ) +
$ ABS( DWORK( IRES+(J-1)*N+I ) )
60 CONTINUE
70 CONTINUE
ELSE
DO 90 J = 1, N
DO 80 I = 1, J
DWORK( IRES+(J-1)*N+I ) = TEMP*ABS( Q( I, J ) ) +
$ ABS( DWORK( IRES+(J-1)*N+I ) )
80 CONTINUE
90 CONTINUE
END IF
C
IF( UPDATE ) THEN
C
DO 110 J = 1, N
DO 100 I = 1, N
DWORK( IABS+(J-1)*N+I ) =
$ ABS( DWORK( IABS+(J-1)*N+I ) )
100 CONTINUE
110 CONTINUE
C
CALL DSYR2K( UPLO, TRANAT, N, N, EPSN, DWORK( IABS+1 ), N,
$ DWORK( IXBS+1 ), N, ONE, DWORK( IRES+1 ), N )
ELSE
C
DO 130 J = 1, N
DO 120 I = 1, MIN( J+1, N )
DWORK( IABS+(J-1)*N+I ) = ABS( T( I, J ) )
120 CONTINUE
130 CONTINUE
C
CALL MB01UD( 'Left', TRANAT, N, N, EPSN, DWORK( IABS+1 ), N,
$ DWORK( IXBS+1), N, DWORK( ITMP+1 ), N, INFO2 )
JJ = IRES + 1
JX = ITMP + 1
IF( LOWER ) THEN
DO 140 J = 1, N
CALL DAXPY( N-J+1, ONE, DWORK( JX ), N, DWORK( JX ),
$ 1 )
CALL DAXPY( N-J+1, ONE, DWORK( JX ), 1, DWORK( JJ ),
$ 1 )
JJ = JJ + N + 1
JX = JX + N + 1
140 CONTINUE
ELSE
DO 150 J = 1, N
CALL DAXPY( J, ONE, DWORK( ITMP+J ), N, DWORK( JX ),
$ 1 )
CALL DAXPY( J, ONE, DWORK( JX ), 1, DWORK( JJ ), 1 )
JJ = JJ + N
JX = JX + N
150 CONTINUE
END IF
END IF
C
IF( LOWER ) THEN
DO 170 J = 1, N
DO 160 I = J, N
DWORK( IABS+(J-1)*N+I ) = ABS( G( I, J ) )
160 CONTINUE
170 CONTINUE
ELSE
DO 190 J = 1, N
DO 180 I = 1, J
DWORK( IABS+(J-1)*N+I ) = ABS( G( I, J ) )
180 CONTINUE
190 CONTINUE
END IF
C
CALL MB01RU( UPLO, TRANA, N, N, ONE, EPS*DBLE( 2*( N + 1 ) ),
$ DWORK( IRES+1 ), N, DWORK( IXBS+1), N,
$ DWORK( IABS+1 ), N, DWORK( ITMP+1 ), NN, INFO2 )
C
WRKOPT = MAX( WRKOPT, 4*NN )
C
C Compute forward error bound, using matrix norm estimator.
C Workspace 4*N*N.
C
XANORM = DLANSY( 'Max', UPLO, N, X, LDX, DWORK )
C
CALL SB03QX( TRANA, UPLO, LYAPUN, N, XANORM, T, LDT, U, LDU,
$ DWORK( IRES+1 ), N, FERR, IWORK, DWORK, IRES,
$ INFO )
END IF
C
DWORK( 1 ) = DBLE( WRKOPT )
RETURN
C
C *** Last line of SB02QD ***
END