dynare/mex/sources/libslicot/MD03BX.f

256 lines
7.9 KiB
Fortran

SUBROUTINE MD03BX( M, N, FNORM, J, LDJ, E, JNORMS, GNORM, IPVT,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the QR factorization with column pivoting of an
C m-by-n matrix J (m >= n), that is, J*P = Q*R, where Q is a matrix
C with orthogonal columns, P a permutation matrix, and R an upper
C trapezoidal matrix with diagonal elements of nonincreasing
C magnitude, and to apply the transformation Q' on the error
C vector e (in-situ). The 1-norm of the scaled gradient is also
C returned. The matrix J could be the Jacobian of a nonlinear least
C squares problem.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the Jacobian matrix J. M >= 0.
C
C N (input) INTEGER
C The number of columns of the Jacobian matrix J.
C M >= N >= 0.
C
C FNORM (input) DOUBLE PRECISION
C The Euclidean norm of the vector e. FNORM >= 0.
C
C J (input/output) DOUBLE PRECISION array, dimension (LDJ, N)
C On entry, the leading M-by-N part of this array must
C contain the Jacobian matrix J.
C On exit, the leading N-by-N upper triangular part of this
C array contains the upper triangular factor R of the
C Jacobian matrix. Note that for efficiency of the later
C calculations, the matrix R is delivered with the leading
C dimension MAX(1,N), possibly much smaller than the value
C of LDJ on entry.
C
C LDJ (input/output) INTEGER
C The leading dimension of array J.
C On entry, LDJ >= MAX(1,M).
C On exit, LDJ >= MAX(1,N).
C
C E (input/output) DOUBLE PRECISION array, dimension (M)
C On entry, this array must contain the error vector e.
C On exit, this array contains the updated vector Q'*e.
C
C JNORMS (output) DOUBLE PRECISION array, dimension (N)
C This array contains the Euclidean norms of the columns of
C the Jacobian matrix, considered in the initial order.
C
C GNORM (output) DOUBLE PRECISION
C If FNORM > 0, the 1-norm of the scaled vector
C J'*Q'*e/FNORM, with each element i further divided by
C JNORMS(i) (if JNORMS(i) is nonzero).
C If FNORM = 0, the returned value of GNORM is 0.
C
C IPVT (output) INTEGER array, dimension (N)
C This array defines the permutation matrix P such that
C J*P = Q*R. Column j of P is column IPVT(j) of the identity
C matrix.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 1, if N = 0 or M = 1;
C LDWORK >= 4*N+1, if N > 1.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The algorithm uses QR factorization with column pivoting of the
C matrix J, J*P = Q*R, and applies the orthogonal matrix Q' to the
C vector e.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary matrix operations, Jacobian matrix, matrix algebra,
C matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDJ, LDWORK, M, N
DOUBLE PRECISION FNORM, GNORM
C .. Array Arguments ..
INTEGER IPVT(*)
DOUBLE PRECISION DWORK(*), E(*), J(*), JNORMS(*)
C .. Local Scalars ..
INTEGER I, ITAU, JWORK, L, WRKOPT
DOUBLE PRECISION SUM
C .. External Functions ..
DOUBLE PRECISION DDOT, DNRM2
EXTERNAL DDOT, DNRM2
C .. External Subroutines ..
EXTERNAL DGEQP3, DLACPY, DORMQR, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, INT, MAX
C ..
C .. Executable Statements ..
C
INFO = 0
IF ( M.LT.0 ) THEN
INFO = -1
ELSEIF ( N.LT.0.OR. M.LT.N ) THEN
INFO = -2
ELSEIF ( FNORM.LT.ZERO ) THEN
INFO = -3
ELSEIF ( LDJ.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE
IF ( N.EQ.0 .OR. M.EQ.1 ) THEN
JWORK = 1
ELSE
JWORK = 4*N + 1
END IF
IF ( LDWORK.LT.JWORK )
$ INFO = -11
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MD03BX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
GNORM = ZERO
IF ( N.EQ.0 ) THEN
LDJ = 1
DWORK(1) = ONE
RETURN
ELSEIF ( M.EQ.1 ) THEN
JNORMS(1) = ABS( J(1) )
IF ( FNORM*J(1).NE.ZERO )
$ GNORM = ABS( E(1)/FNORM )
LDJ = 1
IPVT(1) = 1
DWORK(1) = ONE
RETURN
END IF
C
C Initialize the column pivoting indices.
C
DO 10 I = 1, N
IPVT(I) = 0
10 CONTINUE
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
ITAU = 1
JWORK = ITAU + N
WRKOPT = 1
C
C Compute the QR factorization with pivoting of J, and apply Q' to
C the vector e.
C
C Workspace: need: 4*N + 1;
C prefer: 3*N + ( N+1 )*NB.
C
CALL DGEQP3( M, N, J, LDJ, IPVT, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Workspace: need: N + 1;
C prefer: N + NB.
C
CALL DORMQR( 'Left', 'Transpose', M, 1, N, J, LDJ, DWORK(ITAU), E,
$ M, DWORK(JWORK), LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
IF ( LDJ.GT.N ) THEN
C
C Reshape the array J to have the leading dimension N.
C This destroys the details of the orthogonal matrix Q.
C
CALL DLACPY( 'Upper', N, N, J, LDJ, J, N )
LDJ = N
END IF
C
C Compute the norm of the scaled gradient and original column norms.
C
IF ( FNORM.NE.ZERO ) THEN
C
DO 20 I = 1, N
L = IPVT(I)
JNORMS(L) = DNRM2( I, J((I-1)*LDJ+1), 1 )
IF ( JNORMS(L).NE.ZERO ) THEN
SUM = DDOT( I, J((I-1)*LDJ+1), 1, E, 1 )/FNORM
GNORM = MAX( GNORM, ABS( SUM/JNORMS(L) ) )
END IF
20 CONTINUE
C
ELSE
C
DO 30 I = 1, N
L = IPVT(I)
JNORMS(L) = DNRM2( I, J((I-1)*LDJ+1), 1 )
30 CONTINUE
C
END IF
C
DWORK(1) = WRKOPT
RETURN
C
C *** Last line of MD03BX ***
END