dynare/mex/sources/libslicot/FB01SD.f

598 lines
23 KiB
Fortran

SUBROUTINE FB01SD( JOBX, MULTAB, MULTRC, N, M, P, SINV, LDSINV,
$ AINV, LDAINV, B, LDB, RINV, LDRINV, C, LDC,
$ QINV, LDQINV, X, RINVY, Z, E, TOL, IWORK,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To calculate a combined measurement and time update of one
C iteration of the time-varying Kalman filter. This update is given
C for the square root information filter, using dense matrices.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBX CHARACTER*1
C Indicates whether X is to be computed as follows:
C i+1
C = 'X': X is computed and stored in array X;
C i+1
C = 'N': X is not required.
C i+1
C
C MULTAB CHARACTER*1 -1
C Indicates how matrices A and B are to be passed to
C i i
C the routine as follows: -1
C = 'P': Array AINV must contain the matrix A and the
C -1 i
C array B must contain the product A B ;
C i i
C = 'N': Arrays AINV and B must contain the matrices
C as described below.
C
C MULTRC CHARACTER*1 -1/2
C Indicates how matrices R and C are to be passed to
C i+1 i+1
C the routine as follows:
C = 'P': Array RINV is not used and the array C must
C -1/2
C contain the product R C ;
C i+1 i+1
C = 'N': Arrays RINV and C must contain the matrices
C as described below.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The actual state dimension, i.e., the order of the
C -1 -1
C matrices S and A . N >= 0.
C i i
C
C M (input) INTEGER
C The actual input dimension, i.e., the order of the matrix
C -1/2
C Q . M >= 0.
C i
C
C P (input) INTEGER
C The actual output dimension, i.e., the order of the matrix
C -1/2
C R . P >= 0.
C i+1
C
C SINV (input/output) DOUBLE PRECISION array, dimension
C (LDSINV,N)
C On entry, the leading N-by-N upper triangular part of this
C -1
C array must contain S , the inverse of the square root
C i
C (right Cholesky factor) of the state covariance matrix
C P (hence the information square root) at instant i.
C i|i
C On exit, the leading N-by-N upper triangular part of this
C -1
C array contains S , the inverse of the square root (right
C i+1
C Cholesky factor) of the state covariance matrix P
C i+1|i+1
C (hence the information square root) at instant i+1.
C The strict lower triangular part of this array is not
C referenced.
C
C LDSINV INTEGER
C The leading dimension of array SINV. LDSINV >= MAX(1,N).
C
C AINV (input) DOUBLE PRECISION array, dimension (LDAINV,N)
C -1
C The leading N-by-N part of this array must contain A ,
C i
C the inverse of the state transition matrix of the discrete
C system at instant i.
C
C LDAINV INTEGER
C The leading dimension of array AINV. LDAINV >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain B ,
C -1 i
C the input weight matrix (or the product A B if
C i i
C MULTAB = 'P') of the discrete system at instant i.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C RINV (input) DOUBLE PRECISION array, dimension (LDRINV,*)
C If MULTRC = 'N', then the leading P-by-P upper triangular
C -1/2
C part of this array must contain R , the inverse of the
C i+1
C covariance square root (right Cholesky factor) of the
C output (measurement) noise (hence the information square
C root) at instant i+1.
C The strict lower triangular part of this array is not
C referenced.
C Otherwise, RINV is not referenced and can be supplied as a
C dummy array (i.e., set parameter LDRINV = 1 and declare
C this array to be RINV(1,1) in the calling program).
C
C LDRINV INTEGER
C The leading dimension of array RINV.
C LDRINV >= MAX(1,P) if MULTRC = 'N';
C LDRINV >= 1 if MULTRC = 'P'.
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array must contain C ,
C -1/2 i+1
C the output weight matrix (or the product R C if
C i+1 i+1
C MULTRC = 'P') of the discrete system at instant i+1.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C QINV (input/output) DOUBLE PRECISION array, dimension
C (LDQINV,M)
C On entry, the leading M-by-M upper triangular part of this
C -1/2
C array must contain Q , the inverse of the covariance
C i
C square root (right Cholesky factor) of the input (process)
C noise (hence the information square root) at instant i.
C On exit, the leading M-by-M upper triangular part of this
C -1/2
C array contains (QINOV ) , the inverse of the covariance
C i
C square root (right Cholesky factor) of the process noise
C innovation (hence the information square root) at
C instant i.
C The strict lower triangular part of this array is not
C referenced.
C
C LDQINV INTEGER
C The leading dimension of array QINV. LDQINV >= MAX(1,M).
C
C X (input/output) DOUBLE PRECISION array, dimension (N)
C On entry, this array must contain X , the estimated
C i
C filtered state at instant i.
C On exit, if JOBX = 'X', and INFO = 0, then this array
C contains X , the estimated filtered state at
C i+1
C instant i+1.
C On exit, if JOBX = 'N', or JOBX = 'X' and INFO = 1, then
C -1
C this array contains S X .
C i+1 i+1
C
C RINVY (input) DOUBLE PRECISION array, dimension (P)
C -1/2
C This array must contain R Y , the product of the
C i+1 i+1
C -1/2
C upper triangular matrix R and the measured output
C i+1
C vector Y at instant i+1.
C i+1
C
C Z (input) DOUBLE PRECISION array, dimension (M)
C This array must contain Z , the mean value of the state
C i
C process noise at instant i.
C
C E (output) DOUBLE PRECISION array, dimension (P)
C This array contains E , the estimated error at instant
C i+1
C i+1.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If JOBX = 'X', then TOL is used to test for near
C -1
C singularity of the matrix S . If the user sets
C i+1
C TOL > 0, then the given value of TOL is used as a
C lower bound for the reciprocal condition number of that
C matrix; a matrix whose estimated condition number is less
C than 1/TOL is considered to be nonsingular. If the user
C sets TOL <= 0, then an implicitly computed, default
C tolerance, defined by TOLDEF = N*N*EPS, is used instead,
C where EPS is the machine precision (see LAPACK Library
C routine DLAMCH).
C Otherwise, TOL is not referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C where LIWORK = N if JOBX = 'X',
C and LIWORK = 1 otherwise.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK. If INFO = 0 and JOBX = 'X', DWORK(2) returns
C an estimate of the reciprocal of the condition number
C -1
C (in the 1-norm) of S .
C i+1
C
C LDWORK The length of the array DWORK.
C LDWORK >= MAX(1,N*(N+2*M)+3*M,(N+P)*(N+1)+2*N),
C if JOBX = 'N';
C LDWORK >= MAX(2,N*(N+2*M)+3*M,(N+P)*(N+1)+2*N,3*N),
C if JOBX = 'X'.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value; -1
C = 1: if JOBX = 'X' and the matrix S is singular,
C i+1 -1
C i.e., the condition number estimate of S (in the
C i+1
C -1 -1/2
C 1-norm) exceeds 1/TOL. The matrices S , Q
C i+1 i
C and E have been computed.
C
C METHOD
C
C The routine performs one recursion of the square root information
C filter algorithm, summarized as follows:
C
C | -1/2 -1/2 | | -1/2 |
C | Q 0 Q Z | | (QINOV ) * * |
C | i i i | | i |
C | | | |
C | -1 -1 -1 -1 -1 | | -1 -1 |
C T | S A B S A S X | = | 0 S S X |
C | i i i i i i i | | i+1 i+1 i+1|
C | | | |
C | -1/2 -1/2 | | |
C | 0 R C R Y | | 0 0 E |
C | i+1 i+1 i+1 i+1| | i+1 |
C
C (Pre-array) (Post-array)
C
C where T is an orthogonal transformation triangularizing the
C -1/2
C pre-array, (QINOV ) is the inverse of the covariance square
C i
C root (right Cholesky factor) of the process noise innovation
C (hence the information square root) at instant i, and E is the
C i+1
C estimated error at instant i+1.
C
C The inverse of the corresponding state covariance matrix P
C i+1|i+1
C (hence the information matrix I) is then factorized as
C
C -1 -1 -1
C I = P = (S )' S
C i+1|i+1 i+1|i+1 i+1 i+1
C
C and one combined time and measurement update for the state is
C given by X .
C i+1
C
C The triangularization is done entirely via Householder
C transformations exploiting the zero pattern of the pre-array.
C
C REFERENCES
C
C [1] Anderson, B.D.O. and Moore, J.B.
C Optimal Filtering.
C Prentice Hall, Englewood Cliffs, New Jersey, 1979.
C
C [2] Verhaegen, M.H.G. and Van Dooren, P.
C Numerical Aspects of Different Kalman Filter Implementations.
C IEEE Trans. Auto. Contr., AC-31, pp. 907-917, Oct. 1986.
C
C [3] Vanbegin, M., Van Dooren, P., and Verhaegen, M.H.G.
C Algorithm 675: FORTRAN Subroutines for Computing the Square
C Root Covariance Filter and Square Root Information Filter in
C Dense or Hessenberg Forms.
C ACM Trans. Math. Software, 15, pp. 243-256, 1989.
C
C NUMERICAL ASPECTS
C
C The algorithm requires approximately
C
C 3 2 2 2
C (7/6)N + N x (7/2 x M + P) + N x (1/2 x P + M )
C
C operations and is backward stable (see [2]).
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C Supersedes Release 2.0 routine FB01GD by M. Vanbegin,
C P. Van Dooren, and M.H.G. Verhaegen.
C
C REVISIONS
C
C February 20, 1998, November 20, 2003, February 14, 2004.
C
C KEYWORDS
C
C Kalman filtering, optimal filtering, orthogonal transformation,
C recursive estimation, square-root filtering, square-root
C information filtering.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C .. Scalar Arguments ..
CHARACTER JOBX, MULTAB, MULTRC
INTEGER INFO, LDAINV, LDB, LDC, LDQINV, LDRINV, LDSINV,
$ LDWORK, M, N, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION AINV(LDAINV,*), B(LDB,*), C(LDC,*), DWORK(*),
$ E(*), QINV(LDQINV,*), RINV(LDRINV,*), RINVY(*),
$ SINV(LDSINV,*), X(*), Z(*)
C .. Local Scalars ..
LOGICAL LJOBX, LMULTA, LMULTR
INTEGER I, I12, I13, I21, I23, IJ, ITAU, JWORK, LDW, M1,
$ N1, NP, WRKOPT
DOUBLE PRECISION RCOND
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT
EXTERNAL DDOT, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMM, DGEQRF, DLACPY, DORMQR,
$ DTRMM, DTRMV, MB02OD, MB04KD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C .. Executable Statements ..
C
NP = N + P
N1 = MAX( 1, N )
M1 = MAX( 1, M )
INFO = 0
LJOBX = LSAME( JOBX, 'X' )
LMULTA = LSAME( MULTAB, 'P' )
LMULTR = LSAME( MULTRC, 'P' )
C
C Test the input scalar arguments.
C
IF( .NOT.LJOBX .AND. .NOT.LSAME( JOBX, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.LMULTA .AND. .NOT.LSAME( MULTAB, 'N' ) ) THEN
INFO = -2
ELSE IF( .NOT.LMULTR .AND. .NOT.LSAME( MULTRC, 'N' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( P.LT.0 ) THEN
INFO = -6
ELSE IF( LDSINV.LT.N1 ) THEN
INFO = -8
ELSE IF( LDAINV.LT.N1 ) THEN
INFO = -10
ELSE IF( LDB.LT.N1 ) THEN
INFO = -12
ELSE IF( LDRINV.LT.1 .OR. ( .NOT.LMULTR .AND. LDRINV.LT.P ) ) THEN
INFO = -14
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -16
ELSE IF( LDQINV.LT.M1 ) THEN
INFO = -18
ELSE IF( ( LJOBX .AND. LDWORK.LT.MAX( 2, N*(N + 2*M) + 3*M,
$ NP*(N + 1) + 2*N, 3*N ) )
$ .OR.
$ ( .NOT.LJOBX .AND. LDWORK.LT.MAX( 1, N*(N + 2*M) + 3*M,
$ NP*(N + 1) + 2*N ) ) ) THEN
INFO = -26
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'FB01SD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MAX( N, P ).EQ.0 ) THEN
IF ( LJOBX ) THEN
DWORK(1) = TWO
DWORK(2) = ONE
ELSE
DWORK(1) = ONE
END IF
RETURN
END IF
C
C Construction of the needed part of the pre-array in DWORK.
C To save workspace, only the blocks (1,3), (2,1)-(2,3), (3,2), and
C (3,3) will be constructed when needed as shown below.
C
C Storing SINV x AINV and SINV x AINV x B in the (1,1) and (1,2)
C blocks of DWORK, respectively.
C The variables called Ixy define the starting positions where the
C (x,y) blocks of the pre-array are initially stored in DWORK.
C Workspace: need N*(N+M).
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
LDW = N1
I21 = N*N + 1
C
CALL DLACPY( 'Full', N, N, AINV, LDAINV, DWORK, LDW )
IF ( LMULTA ) THEN
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(I21), LDW )
ELSE
CALL DGEMM( 'No transpose', 'No transpose', N, M, N, ONE,
$ DWORK, LDW, B, LDB, ZERO, DWORK(I21), LDW )
END IF
CALL DTRMM( 'Left', 'Upper', 'No transpose', 'Non-unit', N, N+M,
$ ONE, SINV, LDSINV, DWORK, LDW )
C
C Storing the process noise mean value in (1,3) block of DWORK.
C Workspace: need N*(N+M) + M.
C
I13 = N*( N + M ) + 1
C
CALL DCOPY( M, Z, 1, DWORK(I13), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', M, QINV, LDQINV,
$ DWORK(I13), 1 )
C
C Computing SINV x X in X.
C
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', N, SINV, LDSINV,
$ X, 1 )
C
C Triangularization (2 steps).
C
C Step 1: annihilate the matrix SINV x AINV x B.
C Workspace: need N*(N+2*M) + 3*M.
C
I12 = I13 + M
ITAU = I12 + M*N
JWORK = ITAU + M
C
CALL MB04KD( 'Full', M, N, N, QINV, LDQINV, DWORK(I21), LDW,
$ DWORK, LDW, DWORK(I12), M1, DWORK(ITAU),
$ DWORK(JWORK) )
WRKOPT = MAX( 1, N*( N + 2*M ) + 3*M )
C
IF ( N.EQ.0 ) THEN
CALL DCOPY( P, RINVY, 1, E, 1 )
IF ( LJOBX )
$ DWORK(2) = ONE
DWORK(1) = WRKOPT
RETURN
END IF
C
C Apply the transformations to the last column of the pre-array.
C (Only the updated (2,3) block is now needed.)
C
IJ = I21
C
DO 10 I = 1, M
CALL DAXPY( N, -DWORK(ITAU+I-1)*( DWORK(I13+I-1) +
$ DDOT( N, DWORK(IJ), 1, X, 1 ) ),
$ DWORK(IJ), 1, X, 1 )
IJ = IJ + N
10 CONTINUE
C
C Now, the workspace for SINV x AINV x B, as well as for the updated
C (1,2) block of the pre-array, are no longer needed.
C Move the computed (2,3) block of the pre-array in the (1,2) block
C position of DWORK, to save space for the following computations.
C Then, adjust the implicitly defined leading dimension of DWORK,
C to make space for storing the (3,2) and (3,3) blocks of the
C pre-array.
C Workspace: need (N+P)*(N+1).
C
CALL DCOPY( N, X, 1, DWORK(I21), 1 )
LDW = MAX( 1, NP )
C
DO 30 I = N + 1, 1, -1
DO 20 IJ = N, 1, -1
DWORK(NP*(I-1)+IJ) = DWORK(N*(I-1)+IJ)
20 CONTINUE
30 CONTINUE
C
C Copy of RINV x C in the (2,1) block of DWORK.
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(N+1), LDW )
IF ( .NOT.LMULTR )
$ CALL DTRMM( 'Left', 'Upper', 'No transpose', 'Non-unit', P, N,
$ ONE, RINV, LDRINV, DWORK(N+1), LDW )
C
C Copy the inclusion measurement in the (2,2) block of DWORK.
C
I21 = NP*N + 1
I23 = I21 + N
CALL DCOPY( P, RINVY, 1, DWORK(I23), 1 )
WRKOPT = MAX( WRKOPT, NP*( N + 1 ) )
C
C Step 2: QR factorization of the first block column of the matrix
C
C [ SINV x AINV SINV x X ]
C [ RINV x C RINV x Y ],
C
C where the first block row was modified at Step 1.
C Workspace: need (N+P)*(N+1) + 2*N;
C prefer (N+P)*(N+1) + N + N*NB.
C
ITAU = I21 + NP
JWORK = ITAU + N
C
CALL DGEQRF( NP, N, DWORK, LDW, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Apply the Householder transformations to the last column.
C Workspace: need (N+P)*(N+1) + 1; prefer (N+P)*(N+1) + NB.
C
CALL DORMQR( 'Left', 'Transpose', NP, 1, N, DWORK, LDW,
$ DWORK(ITAU), DWORK(I21), LDW, DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C Output SINV, X, and E and set the optimal workspace dimension
C (and the reciprocal of the condition number estimate).
C
CALL DLACPY( 'Upper', N, N, DWORK, LDW, SINV, LDSINV )
CALL DCOPY( N, DWORK(I21), 1, X, 1 )
CALL DCOPY( P, DWORK(I23), 1, E, 1 )
C
IF ( LJOBX ) THEN
C
C Compute X.
C Workspace: need 3*N.
C
CALL MB02OD( 'Left', 'Upper', 'No transpose', 'Non-unit',
$ '1-norm', N, 1, ONE, SINV, LDSINV, X, N, RCOND,
$ TOL, IWORK, DWORK, INFO )
IF ( INFO.EQ.0 ) THEN
WRKOPT = MAX( WRKOPT, 3*N )
DWORK(2) = RCOND
END IF
END IF
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of FB01SD ***
END