dynare/mex/sources/libslicot/AB09HX.f

691 lines
25 KiB
Fortran

SUBROUTINE AB09HX( DICO, JOB, ORDSEL, N, M, P, NR, A, LDA, B, LDB,
$ C, LDC, D, LDD, HSV, T, LDT, TI, LDTI, TOL1,
$ TOL2, IWORK, DWORK, LDWORK, BWORK, IWARN,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr,Dr) for an original
C stable state-space representation (A,B,C,D) by using the
C stochastic balancing approach in conjunction with the square-root
C or the balancing-free square-root Balance & Truncate (B&T) or
C Singular Perturbation Approximation (SPA) model reduction methods.
C The state dynamics matrix A of the original system is an upper
C quasi-triangular matrix in real Schur canonical form and D must be
C full row rank.
C
C For the B&T approach, the matrices of the reduced order system
C are computed using the truncation formulas:
C
C Ar = TI * A * T , Br = TI * B , Cr = C * T . (1)
C
C For the SPA approach, the matrices of a minimal realization
C (Am,Bm,Cm) are computed using the truncation formulas:
C
C Am = TI * A * T , Bm = TI * B , Cm = C * T . (2)
C
C Am, Bm, Cm and D serve further for computing the SPA of the given
C system.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOB CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root Balance & Truncate method;
C = 'F': use the balancing-free square-root
C Balance & Truncate method;
C = 'S': use the square-root Singular Perturbation
C Approximation method;
C = 'P': use the balancing-free square-root
C Singular Perturbation Approximation method.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL1.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation,
C i.e., the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. M >= P >= 0.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of
C the resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. NR is set as follows:
C if ORDSEL = 'F', NR is equal to MIN(NR,NMIN), where NR
C is the desired order on entry and NMIN is the order of a
C minimal realization of the given system; NMIN is
C determined as the number of Hankel singular values greater
C than N*EPS, where EPS is the machine precision
C (see LAPACK Library Routine DLAMCH);
C if ORDSEL = 'A', NR is equal to the number of Hankel
C singular values greater than MAX(TOL1,N*EPS).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A in a real Schur
C canonical form.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the
C reduced order system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the original input/output matrix D.
C On exit, if INFO = 0, the leading P-by-M part of this
C array contains the input/output matrix Dr of the reduced
C order system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, it contains the Hankel singular values,
C ordered decreasingly, of the phase system. All singular
C values are less than or equal to 1.
C
C T (output) DOUBLE PRECISION array, dimension (LDT,N)
C If INFO = 0 and NR > 0, the leading N-by-NR part of this
C array contains the right truncation matrix T in (1), for
C the B&T approach, or in (2), for the SPA approach.
C
C LDT INTEGER
C The leading dimension of array T. LDT >= MAX(1,N).
C
C TI (output) DOUBLE PRECISION array, dimension (LDTI,N)
C If INFO = 0 and NR > 0, the leading NR-by-N part of this
C array contains the left truncation matrix TI in (1), for
C the B&T approach, or in (2), for the SPA approach.
C
C LDTI INTEGER
C The leading dimension of array TI. LDTI >= MAX(1,N).
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If ORDSEL = 'A', TOL1 contains the tolerance for
C determining the order of reduced system.
C For model reduction, the recommended value lies in the
C interval [0.00001,0.001].
C If TOL1 <= 0 on entry, the used default value is
C TOL1 = N*EPS, where EPS is the machine
C precision (see LAPACK Library Routine DLAMCH).
C If ORDSEL = 'F', the value of TOL1 is ignored.
C
C TOL2 DOUBLE PRECISION
C The tolerance for determining the order of a minimal
C realization of the phase system (see METHOD) corresponding
C to the given system.
C The recommended value is TOL2 = N*EPS.
C This value is used by default if TOL2 <= 0 on entry.
C If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
C
C Workspace
C
C IWORK INTEGER array, dimension MAX(1,2*N)
C On exit with INFO = 0, IWORK(1) contains the order of the
C minimal realization of the system.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK and DWORK(2) contains RCOND, the reciprocal
C condition number of the U11 matrix from the expression
C used to compute the solution X = U21*inv(U11) of the
C Riccati equation for spectral factorization.
C A small value RCOND indicates possible ill-conditioning
C of the respective Riccati equation.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( 2, N*(MAX(N,M,P)+5),
C 2*N*P+MAX(P*(M+2),10*N*(N+1) ) ).
C For optimum performance LDWORK should be larger.
C
C BWORK LOGICAL array, dimension 2*N
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than the order of a minimal realization of the
C given system. In this case, the resulting NR is
C set automatically to a value corresponding to the
C order of a minimal realization of the system.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the state matrix A is not stable (if DICO = 'C')
C or not convergent (if DICO = 'D'), or it is not in
C a real Schur form;
C = 2: the reduction of Hamiltonian matrix to real
C Schur form failed;
C = 3: the reordering of the real Schur form of the
C Hamiltonian matrix failed;
C = 4: the Hamiltonian matrix has less than N stable
C eigenvalues;
C = 5: the coefficient matrix U11 in the linear system
C X*U11 = U21, used to determine X, is singular to
C working precision;
C = 6: the feedthrough matrix D has not a full row rank P;
C = 7: the computation of Hankel singular values failed.
C
C METHOD
C
C Let be the stable linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) + Du(t), (3)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09HX determines for
C the given system (3), the matrices of a reduced NR-rder system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) + Dr*u(t), (4)
C
C such that
C
C HSV(NR) <= INFNORM(G-Gr) <= 2*[HSV(NR+1) + ... + HSV(N)],
C
C where G and Gr are transfer-function matrices of the systems
C (A,B,C,D) and (Ar,Br,Cr,Dr), respectively, and INFNORM(G) is the
C infinity-norm of G.
C
C If JOB = 'B', the square-root stochastic Balance & Truncate
C method of [1] is used and the resulting model is balanced.
C
C If JOB = 'F', the balancing-free square-root version of the
C stochastic Balance & Truncate method [1] is used.
C
C If JOB = 'S', the stochastic balancing method, in conjunction
C with the square-root version of the Singular Perturbation
C Approximation method [2,3] is used.
C
C If JOB = 'P', the stochastic balancing method, in conjunction
C with the balancing-free square-root version of the Singular
C Perturbation Approximation method [2,3] is used.
C
C By setting TOL1 = TOL2, the routine can be also used to compute
C Balance & Truncate approximations.
C
C REFERENCES
C
C [1] Varga A. and Fasol K.H.
C A new square-root balancing-free stochastic truncation
C model reduction algorithm.
C Proc. of 12th IFAC World Congress, Sydney, 1993.
C
C [2] Liu Y. and Anderson B.D.O.
C Singular Perturbation Approximation of balanced systems.
C Int. J. Control, Vol. 50, pp. 1379-1405, 1989.
C
C [3] Varga A.
C Balancing-free square-root algorithm for computing singular
C perturbation approximations.
C Proc. 30-th IEEE CDC, Brighton, Dec. 11-13, 1991,
C Vol. 2, pp. 1062-1065.
C
C NUMERICAL ASPECTS
C
C The implemented method relies on accuracy enhancing square-root
C or balancing-free square-root methods. The effectiveness of the
C accuracy enhancing technique depends on the accuracy of the
C solution of a Riccati equation. Ill-conditioned Riccati solution
C typically results when D is nearly rank deficient.
C 3
C The algorithm requires about 100N floating point operations.
C
C CONTRIBUTORS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, May 2000.
C D. Sima, University of Bucharest, May 2000.
C V. Sima, Research Institute for Informatics, Bucharest, May 2000.
C Partly based on the RASP routine SRBFS1, by A. Varga, 1992.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 2001.
C
C KEYWORDS
C
C Balance and truncate, minimal state-space representation,
C model reduction, multivariable system,
C singular perturbation approximation, state-space model,
C stochastic balancing.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, TWO, ZERO
PARAMETER ( ONE = 1.0D0, TWO = 2.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD, LDT, LDTI,
$ LDWORK, M, N, NR, P
DOUBLE PRECISION TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), HSV(*), T(LDT,*), TI(LDTI,*)
LOGICAL BWORK(*)
C .. Local Scalars ..
LOGICAL BAL, BTA, DISCR, FIXORD, SPA
INTEGER IERR, IJ, J, K, KTAU, KU, KV, KW, LDW, LW,
$ NMINR, NR1, NS, WRKOPT
DOUBLE PRECISION ATOL, RCOND, RICOND, SCALEC, SCALEO, TEMP,
$ TOLDEF
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL AB04MD, AB09DD, AB09HY, DGEMM, DGEMV, DGEQRF,
$ DGETRF, DGETRS, DLACPY, DORGQR, DSCAL, DTRMM,
$ DTRMV, MA02AD, MB03UD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
BTA = LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'F' )
SPA = LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'P' )
BAL = LSAME( JOB, 'B' ) .OR. LSAME( JOB, 'S' )
FIXORD = LSAME( ORDSEL, 'F' )
LW = MAX( 2, N*(MAX( N, M, P )+5),
$ 2*N*P+MAX( P*(M+2), 10*N*(N+1) ) )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( BTA .OR. SPA ) ) THEN
INFO = -2
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( P.LT.0 .OR. P.GT.M ) THEN
INFO = -6
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -13
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -15
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDTI.LT.MAX( 1, N ) ) THEN
INFO = -20
ELSE IF( TOL2.GT.ZERO .AND. .NOT.FIXORD .AND. TOL2.GT.TOL1 ) THEN
INFO = -22
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -25
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09HX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
NR = 0
IWORK(1) = 0
DWORK(1) = TWO
DWORK(2) = ONE
RETURN
END IF
C
C For discrete-time case, apply the discrete-to-continuous bilinear
C transformation.
C
IF( DISCR ) THEN
C
C Real workspace: need N, prefer larger;
C Integer workspace: need N.
C
CALL AB04MD( 'Discrete', N, M, P, ONE, ONE, A, LDA, B, LDB,
$ C, LDC, D, LDD, IWORK, DWORK, LDWORK, IERR )
IF( IERR.NE.0 ) THEN
INFO = 1
RETURN
END IF
WRKOPT = MAX( N, INT( DWORK(1) ) )
ELSE
WRKOPT = 0
END IF
C
C Compute in TI and T the Cholesky factors Su and Ru of the
C controllability and observability Grammians, respectively.
C Real workspace: need MAX( 2, N*(MAX(N,M,P)+5),
C 2*N*P+MAX(P*(M+2),10*N*(N+1) ) );
C prefer larger.
C Integer workspace: need 2*N.
C
CALL AB09HY( N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
$ SCALEC, SCALEO, TI, LDTI, T, LDT, IWORK,
$ DWORK, LDWORK, BWORK, INFO )
IF( INFO.NE.0)
$ RETURN
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
RICOND = DWORK(2)
C
C Save Su in V.
C
KU = 1
KV = KU + N*N
KW = KV + N*N
CALL DLACPY( 'Upper', N, N, TI, LDTI, DWORK(KV), N )
C | x x |
C Compute Ru*Su in the form | 0 x | in TI.
C
DO 10 J = 1, N
CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', J, T, LDT,
$ TI(1,J), 1 )
10 CONTINUE
C
C Compute the singular value decomposition Ru*Su = V*S*UT
C of the upper triangular matrix Ru*Su, with UT in TI and V in U.
C
C Workspace: need 2*N*N + 5*N;
C prefer larger.
C
CALL MB03UD( 'Vectors', 'Vectors', N, TI, LDTI, DWORK(KU), N, HSV,
$ DWORK(KW), LDWORK-KW+1, IERR )
IF( IERR.NE.0 ) THEN
INFO = 7
RETURN
ENDIF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Scale the singular values.
C
CALL DSCAL( N, ONE / SCALEC / SCALEO, HSV, 1 )
C
C Partition S, U and V conformally as:
C
C S = diag(S1,S2,S3), U = [U1,U2,U3] (U' in TI) and V = [V1,V2,V3]
C (in U).
C
C Compute the order NR of reduced system, as the order of S1.
C
TOLDEF = DBLE( N )*DLAMCH( 'Epsilon' )
ATOL = TOLDEF
IF( FIXORD ) THEN
IF( NR.GT.0 ) THEN
IF( HSV(NR).LE.ATOL ) THEN
NR = 0
IWARN = 1
FIXORD = .FALSE.
ENDIF
ENDIF
ELSE
ATOL = MAX( TOL1, ATOL )
NR = 0
ENDIF
IF( .NOT.FIXORD ) THEN
DO 20 J = 1, N
IF( HSV(J).LE.ATOL ) GO TO 30
NR = NR + 1
20 CONTINUE
30 CONTINUE
ENDIF
C
C Compute the order of minimal realization as the order of [S1 S2].
C
NR1 = NR + 1
NMINR = NR
IF( NR.LT.N ) THEN
IF( SPA ) ATOL = MAX( TOL2, TOLDEF )
DO 40 J = NR1, N
IF( HSV(J).LE.ATOL ) GO TO 50
NMINR = NMINR + 1
40 CONTINUE
50 CONTINUE
END IF
C
C Finish if the order is zero.
C
IF( NR.EQ.0 ) THEN
IF( SPA ) THEN
CALL AB09DD( 'Continuous', N, M, P, NR, A, LDA, B, LDB,
$ C, LDC, D, LDD, RCOND, IWORK, DWORK, IERR )
IWORK(1) = NMINR
ELSE
IWORK(1) = 0
END IF
DWORK(1) = WRKOPT
DWORK(2) = RICOND
RETURN
END IF
C
C Compute NS, the order of S2.
C Note: For BTA, NS is always zero, because NMINR = NR.
C
NS = NMINR - NR
C
C Compute the truncation matrices.
C
C Compute TI' = | TI1' TI2' | = Ru'*| V1 V2 | in U.
C
CALL DTRMM( 'Left', 'Upper', 'Transpose', 'NonUnit', N, NMINR,
$ ONE, T, LDT, DWORK(KU), N )
C
C Compute T = | T1 T2 | = Su*| U1 U2 | .
C
CALL MA02AD( 'Full', NMINR, N, TI, LDTI, T, LDT )
CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit', N,
$ NMINR, ONE, DWORK(KV), N, T, LDT )
KTAU = KV
C
IF( BAL ) THEN
IJ = KU
C
C Square-Root B&T/SPA method.
C
C Compute the truncation matrices for balancing
C -1/2 -1/2
C T1*S1 and TI1'*S1 .
C
DO 70 J = 1, NR
TEMP = ONE/SQRT( HSV(J) )
CALL DSCAL( N, TEMP, T(1,J), 1 )
CALL DSCAL( N, TEMP, DWORK(IJ), 1 )
IJ = IJ + N
70 CONTINUE
ELSE
C
C Balancing-Free B&T/SPA method.
C
C Compute orthogonal bases for the images of matrices T1 and
C TI1'.
C
C Workspace: need N*MAX(N,M,P) + 2*NR;
C prefer N*MAX(N,M,P) + NR*(NB+1)
C (NB determined by ILAENV for DGEQRF).
C
KW = KTAU + NR
LDW = LDWORK - KW + 1
CALL DGEQRF( N, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW, IERR )
CALL DORGQR( N, NR, NR, T, LDT, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
CALL DGEQRF( N, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
CALL DORGQR( N, NR, NR, DWORK(KU), N, DWORK(KTAU), DWORK(KW),
$ LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
ENDIF
IF( NS.GT.0 ) THEN
C
C Compute orthogonal bases for the images of matrices T2 and
C TI2'.
C
C Workspace: need N*MAX(N,M,P) + 2*NS;
C prefer N*MAX(N,M,P) + NS*(NB+1)
C (NB determined by ILAENV for DGEQRF).
KW = KTAU + NS
LDW = LDWORK - KW + 1
CALL DGEQRF( N, NS, T(1,NR1), LDT, DWORK(KTAU), DWORK(KW), LDW,
$ IERR )
CALL DORGQR( N, NS, NS, T(1,NR1), LDT, DWORK(KTAU), DWORK(KW),
$ LDW, IERR )
CALL DGEQRF( N, NS, DWORK(KU+N*NR), N, DWORK(KTAU), DWORK(KW),
$ LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
CALL DORGQR( N, NS, NS, DWORK(KU+N*NR), N, DWORK(KTAU),
$ DWORK(KW), LDW, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
ENDIF
C
C Transpose TI' in TI.
C
CALL MA02AD( 'Full', N, NMINR, DWORK(KU), N, TI, LDTI )
C
IF( .NOT.BAL ) THEN
C -1
C Compute (TI1*T1) *TI1 in TI.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', NR, NR, N, ONE, TI,
$ LDTI, T, LDT, ZERO, DWORK(KU), N )
CALL DGETRF( NR, NR, DWORK(KU), N, IWORK, IERR )
CALL DGETRS( 'NoTranspose', NR, N, DWORK(KU), N, IWORK, TI,
$ LDTI, IERR )
C
IF( NS.GT.0 ) THEN
C -1
C Compute (TI2*T2) *TI2 in TI2.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', NS, NS, N, ONE,
$ TI(NR1,1), LDTI, T(1,NR1), LDT, ZERO, DWORK(KU),
$ N )
CALL DGETRF( NS, NS, DWORK(KU), N, IWORK, IERR )
CALL DGETRS( 'NoTranspose', NS, N, DWORK(KU), N, IWORK,
$ TI(NR1,1), LDTI, IERR )
END IF
END IF
C
C Compute TI*A*T (A is in RSF).
C
IJ = KU
DO 80 J = 1, N
K = MIN( J+1, N )
CALL DGEMV( 'NoTranspose', NMINR, K, ONE, TI, LDTI, A(1,J), 1,
$ ZERO, DWORK(IJ), 1 )
IJ = IJ + N
80 CONTINUE
CALL DGEMM( 'NoTranspose', 'NoTranspose', NMINR, NMINR, N, ONE,
$ DWORK(KU), N, T, LDT, ZERO, A, LDA )
C
C Compute TI*B and C*T.
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KU), N )
CALL DGEMM( 'NoTranspose', 'NoTranspose', NMINR, M, N, ONE, TI,
$ LDTI, DWORK(KU), N, ZERO, B, LDB )
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KU), P )
CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NMINR, N, ONE,
$ DWORK(KU), P, T, LDT, ZERO, C, LDC )
C
C Compute the singular perturbation approximation if possible.
C Note that IERR = 1 on exit from AB09DD cannot appear here.
C
C Workspace: need real 4*(NMINR-NR);
C need integer 2*(NMINR-NR).
C
CALL AB09DD( 'Continuous', NMINR, M, P, NR, A, LDA, B, LDB,
$ C, LDC, D, LDD, RCOND, IWORK, DWORK, IERR )
C
C For discrete-time case, apply the continuous-to-discrete
C bilinear transformation.
C
IF( DISCR ) THEN
CALL AB04MD( 'Continuous', NR, M, P, ONE, ONE, A, LDA, B, LDB,
$ C, LDC, D, LDD, IWORK, DWORK, LDWORK, IERR )
C
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
END IF
IWORK(1) = NMINR
DWORK(1) = WRKOPT
DWORK(2) = RICOND
C
RETURN
C *** Last line of AB09HX ***
END