dynare/dynare++/kord/korder_stoch.hh

566 lines
19 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2005 Ondra Kamenik
* Copyright © 2019 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
// Higher order at stochastic steady
/* This file defines a number of classes of which KOrderStoch is the main
purpose. Basically, KOrderStoch calculates first and higher order Taylor
expansion of a policy rule at σ>0 with explicit forward g**. More formally,
we have to solve a policy rule g from
𝔼ₜ[f(g**(g*(y*ₜ,uₜ,σ),uₜ₊₁,σ),g(y*,uₜ,σ),y*,uₜ)]
As the introduction in approximation.hh argues, g** at tine t+1 must be
given from outside. Let the explicit 𝔼ₜ(g**(y*,uₜ₊₁,σ) be equal to h(y*,σ).
Then we have to solve f(h(g*(y*,u,σ),σ),g(y,u,σ),y,u), which is much easier
than fully implicit system for σ=0.
Besides the class KOrderStoch, we declare here also classes for the new
containers corresponding to f(h(g*(y*,u,σ),σ),g(y,u,σ),y,u). Further, we
declare IntegDerivs and StochForwardDerivs classes which basically calculate
h as an extrapolation based on an approximation to g at lower σ.
*/
#include <memory>
#include "korder.hh"
#include "faa_di_bruno.hh"
#include "journal.hh"
#include "pascal_triangle.hh"
/* This class is a container, which has a specialized constructor integrating
the policy rule at given σ. */
template<Storage t>
class IntegDerivs : public ctraits<t>::Tgss
{
public:
IntegDerivs(int r, const IntSequence &nvs, const typename ctraits<t>::Tgss &g,
const typename ctraits<t>::Tm &mom, double at_sigma);
};
/* This constructor integrates a rule (namely its g** part) with respect to
u=σ~·η, and stores to the object the derivatives of this integral h at
(y*,u,σ)=(ỹ*,0,σ~). The original container of g**, the moments of the
stochastic shocks mom and the σ~ are input.
The code follows the following derivation
h(y,σ) = 𝔼ₜ[g(y,u,σ)]
1 ⎛ d ⎞
= ỹ + ∑ ── ∑ ⎝i,j,k⎠ [g_yⁱuʲσᵏ] (y*-ỹ*)ⁱ σʲ Σʲ (σ-σ~)ᵏ
ᵈ⁼¹ d! ⁱ⁺ʲ⁺ᵏ⁼ᵈ
1 ⎛ d ⎞ ⎛m+n⎞
= ỹ + ∑ ── ∑ ⎝i,m+n,k⎠ [g_yⁱuᵐ⁺ⁿσᵏ] ŷ*ⁱ Σᵐ⁺ⁿ ⎝m,n⎠ σ~ᵐ σ^ᵏ⁺ⁿ
ᵈ⁼¹ d! ⁱ⁺ᵐ⁺ⁿ⁺ᵏ⁼ᵈ
1 ⎛ d ⎞
= ỹ + ∑ ── ∑ ⎝i,m,n,k⎠ [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ ŷ*ⁱ σ^ᵏ⁺ⁿ
ᵈ⁼¹ d! ⁱ⁺ᵐ⁺ⁿ⁺ᵏ⁼ᵈ
1 ⎛ d ⎞
= ỹ + ∑ ── ∑ ∑ ⎝i,m,n,k⎠ [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ ŷ*ⁱ σ^ᵏ⁺ⁿ
ᵈ⁼¹ d! ⁱ⁺ᵖ⁼ᵈ ᵐ⁼⁰
ⁿ⁺ᵏ⁼ᵖ
1 ⎛ d ⎞ ⎡ ⎛ p ⎞ 1 ⎤
= ỹ + ∑ ── ∑ ⎝i,p⎠ ⎢ ∑ ⎝n,k⎠ ── [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ⎥ ŷ*ⁱ σ^ᵏ⁺ⁿ
ᵈ⁼¹ d! ⁱ⁺ᵖ⁼ᵈ ⎢ ᵐ⁼⁰ m! ⎥
⎣ⁿ⁺ᵏ⁼ᵖ ⎦
⎛ a ⎞
where ⎝b₁,…,bₙ⎠ is a generalized combination number, p=k+n, σ^=σ-σ~,
ŷ*=y*-ỹ, and we gave up writing the multidimensional indexes in Einstein
summation.
This implies that:
⎛ p ⎞ 1
h_yⁱσᵖ = ∑ ⎝n,k⎠ ── [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ
ᵐ⁼⁰ m!
ⁿ⁺ᵏ⁼ᵖ
and this is exactly what the code does.
*/
template<Storage t>
IntegDerivs<t>::IntegDerivs(int r, const IntSequence &nvs, const typename ctraits<t>::Tgss &g,
const typename ctraits<t>::Tm &mom, double at_sigma)
: ctraits<t>::Tgss(4)
{
int maxd = g.getMaxDim();
for (int d = 1; d <= maxd; d++)
{
for (int i = 0; i <= d; i++)
{
int p = d-i;
Symmetry sym{i, 0, 0, p};
auto ten = std::make_unique<typename ctraits<t>::Ttensor>(r, TensorDimens(sym, nvs));
// Calculate derivative h_yⁱσ
/* This code calculates:
⎛ p ⎞ 1
h_yⁱσᵖ = ∑ ⎝n,k⎠ ── [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ
ᵐ⁼⁰ m!
ⁿ⁺ᵏ⁼ᵖ
and stores it in ten. */
ten->zeros();
for (int n = 0; n <= p; n++)
{
int k = p-n;
int povern = PascalTriangle::noverk(p, n);
int mfac = 1;
for (int m = 0; i+m+n+k <= maxd; m++, mfac *= m)
{
double mult = (pow(at_sigma, m)*povern)/mfac;
Symmetry sym_mn{i, m+n, 0, k};
if (m+n == 0 && g.check(sym_mn))
ten->add(mult, g.get(sym_mn));
if (m+n > 0 && KOrder::is_even(m+n) && g.check(sym_mn))
{
typename ctraits<t>::Ttensor gtmp(g.get(sym_mn));
gtmp.mult(mult);
gtmp.contractAndAdd(1, *ten, mom.get(Symmetry{m+n}));
}
}
}
this->insert(std::move(ten));
}
}
}
/* This class calculates an extrapolation of expectation of forward
derivatives. It is a container, all calculations are done in a constructor.
The class calculates derivatives of E[g(y*,u,σ)] at (ȳ*,σ¯). The derivatives
are extrapolated based on derivatives at (ỹ*,σ~). */
template<Storage t>
class StochForwardDerivs : public ctraits<t>::Tgss
{
public:
StochForwardDerivs(const PartitionY &ypart, int nu,
const typename ctraits<t>::Tgss &g, const typename ctraits<t>::Tm &m,
const Vector &ydelta, double sdelta,
double at_sigma);
};
/* This is the constructor which performs the integration and the
extrapolation. Its parameters are: g is the container of derivatives at
(ỹ,σ~); m are the moments of stochastic shocks; ydelta is a difference
of the steady states ȳ−ỹ; sdelta is the difference between new sigma and
old sigma σ¯−σ~, and at_sigma is σ~. There is no need of inputing the ỹ.
We do the operation in four steps:
— Integrate g**, the derivatives are at (ỹ,σ~)
— Form the (full symmetric) polynomial from the derivatives stacking
⎡y*⎤
⎣σ ⎦
— Centralize this polynomial about (ȳ,σ¯)
— Recover general symmetry tensors from the (full symmetric) polynomial
*/
template<Storage t>
StochForwardDerivs<t>::StochForwardDerivs(const PartitionY &ypart, int nu,
const typename ctraits<t>::Tgss &g,
const typename ctraits<t>::Tm &m,
const Vector &ydelta, double sdelta,
double at_sigma)
: ctraits<t>::Tgss(4)
{
int maxd = g.getMaxDim();
int r = ypart.nyss();
// Make g_int be integral of g** at (ỹ,σ~)
/* This simply constructs IntegDerivs class. Note that the nvs of
the tensors has zero dimensions for shocks, this is because we need to
⎡y*⎤
make easily stacks of the form ⎣σ ⎦ in the next step. */
IntSequence nvs{ypart.nys(), 0, 0, 1};
IntegDerivs<t> g_int(r, nvs, g, m, at_sigma);
// Make g_int_sym be full symmetric polynomial from g_int
/* Here we just form a polynomial whose unique variable corresponds to
⎡y*⎤
⎣σ ⎦ stack. */
typename ctraits<t>::Tpol g_int_sym(r, ypart.nys()+1);
for (int d = 1; d <= maxd; d++)
{
auto ten = std::make_unique<typename ctraits<t>::Ttensym>(r, ypart.nys()+1, d);
ten->zeros();
for (int i = 0; i <= d; i++)
{
int k = d-i;
if (g_int.check(Symmetry{i, 0, 0, k}))
ten->addSubTensor(g_int.get(Symmetry{i, 0, 0, k}));
}
g_int_sym.insert(std::move(ten));
}
// Make g_int_cent the centralized polynomial about (ȳ,σ¯)
/* Here we centralize the polynomial to (ȳ,σ¯) knowing that the polynomial
was centralized about (ỹ,σ~). This is done by derivating and evaluating
the derivated polynomial at (ȳ−ỹ,σ¯-σ~). The stack of this vector is
delta in the code. */
Vector delta(ypart.nys()+1);
Vector dy(delta, 0, ypart.nys());
ConstVector dy_in(ydelta, ypart.nstat, ypart.nys());
dy = dy_in;
delta[ypart.nys()] = sdelta;
typename ctraits<t>::Tpol g_int_cent(r, ypart.nys()+1);
for (int d = 1; d <= maxd; d++)
{
g_int_sym.derivative(d-1);
auto der = g_int_sym.evalPartially(d, delta);
g_int_cent.insert(std::move(der));
}
// Pull out general symmetry tensors from g_int_cent
/* Here we only recover the general symmetry derivatives from the full
symmetric polynomial. Note that the derivative get the true nvs. */
IntSequence ss{ypart.nys(), 0, 0, 1};
IntSequence pp{0, 1, 2, 3};
IntSequence true_nvs(nvs);
true_nvs[1] = nu;
true_nvs[2] = nu;
for (int d = 1; d <= maxd; d++)
if (g_int_cent.check(Symmetry{d}))
for (int i = 0; i <= d; i++)
{
Symmetry sym{i, 0, 0, d-i};
IntSequence coor(pp.unfold(sym));
auto ten = std::make_unique<typename ctraits<t>::Ttensor>(g_int_cent.get(Symmetry{d}),
ss, coor,
TensorDimens(sym, true_nvs));
this->insert(std::move(ten));
}
}
/* This container corresponds to h(g*(y,u,σ),σ). Note that in our application,
the σ as a second argument to h will be its fourth variable in symmetry, so
we have to do four member stack having the second and third stack dummy. */
template<class _Ttype>
class GXContainer : public GContainer<_Ttype>
{
public:
using _Stype = StackContainerInterface<_Ttype>;
using _Ctype = typename StackContainer<_Ttype>::_Ctype;
using itype = typename StackContainer<_Ttype>::itype;
GXContainer(const _Ctype *gs, int ngs, int nu)
: GContainer<_Ttype>(gs, ngs, nu)
{
}
itype getType(int i, const Symmetry &s) const override;
};
/* This routine corresponds to this stack:
⎡ g*(y,u,σ) ⎤
⎢ dummy ⎥
⎢ dummy ⎥
σ
*/
template<class _Ttype>
typename GXContainer<_Ttype>::itype
GXContainer<_Ttype>::getType(int i, const Symmetry &s) const
{
if (i == 0)
if (s[2] > 0)
return itype::zero;
else
return itype::matrix;
if (i == 1)
return itype::zero;
if (i == 2)
return itype::zero;
if (i == 3)
if (s == Symmetry{0, 0, 0, 1})
return itype::unit;
else
return itype::zero;
KORD_RAISE("Wrong stack index in GXContainer::getType");
}
/* This container corresponds to f(H(y,u,σ),g(y,u,sigma),y,u), where the H has
the size (number of rows) as g**. Since it is very simmilar to ZContainer,
we inherit form it and override only getType() method. */
template<class _Ttype>
class ZXContainer : public ZContainer<_Ttype>
{
public:
using _Stype = StackContainerInterface<_Ttype>;
using _Ctype = typename StackContainer<_Ttype>::_Ctype;
using itype = typename StackContainer<_Ttype>::itype;
ZXContainer(const _Ctype *gss, int ngss, const _Ctype *g, int ng, int ny, int nu)
: ZContainer<_Ttype>(gss, ngss, g, ng, ny, nu)
{
}
itype getType(int i, const Symmetry &s) const override;
};
/* This getType() method corresponds to this stack:
⎡ H(y,u,σ) ⎤
⎢ g(y,u,σ) ⎥
⎢ y ⎥
⎣ u ⎦
*/
template<class _Ttype>
typename ZXContainer<_Ttype>::itype
ZXContainer<_Ttype>::getType(int i, const Symmetry &s) const
{
if (i == 0)
if (s[2] > 0)
return itype::zero;
else
return itype::matrix;
if (i == 1)
if (s[2] > 0)
return itype::zero;
else
return itype::matrix;
if (i == 2)
if (s == Symmetry{1, 0, 0, 0})
return itype::unit;
else
return itype::zero;
if (i == 3)
if (s == Symmetry{0, 1, 0, 0})
return itype::unit;
else
return itype::zero;
KORD_RAISE("Wrong stack index in ZXContainer::getType");
}
class UnfoldedGXContainer : public GXContainer<UGSTensor>, public UnfoldedStackContainer
{
public:
using _Ctype = TensorContainer<UGSTensor>;
UnfoldedGXContainer(const _Ctype *gs, int ngs, int nu)
: GXContainer<UGSTensor>(gs, ngs, nu)
{
}
};
class FoldedGXContainer : public GXContainer<FGSTensor>, public FoldedStackContainer
{
public:
using _Ctype = TensorContainer<FGSTensor>;
FoldedGXContainer(const _Ctype *gs, int ngs, int nu)
: GXContainer<FGSTensor>(gs, ngs, nu)
{
}
};
class UnfoldedZXContainer : public ZXContainer<UGSTensor>, public UnfoldedStackContainer
{
public:
using _Ctype = TensorContainer<UGSTensor>;
UnfoldedZXContainer(const _Ctype *gss, int ngss, const _Ctype *g, int ng, int ny, int nu)
: ZXContainer<UGSTensor>(gss, ngss, g, ng, ny, nu)
{
}
};
class FoldedZXContainer : public ZXContainer<FGSTensor>, public FoldedStackContainer
{
public:
using _Ctype = TensorContainer<FGSTensor>;
FoldedZXContainer(const _Ctype *gss, int ngss, const _Ctype *g, int ng, int ny, int nu)
: ZXContainer<FGSTensor>(gss, ngss, g, ng, ny, nu)
{
}
};
/* This matrix corresponds to
[f_{y}]+ [0 [f_y**₊]·[h**_y*] 0]
This is almost the same as MatrixA, the only difference that the MatrixA is
constructed from whole h_y*, not only from h**_y*, hence the new
abstraction. */
class MatrixAA : public PLUMatrix
{
public:
MatrixAA(const FSSparseTensor &f, const IntSequence &ss,
const TwoDMatrix &gyss, const PartitionY &ypart);
};
/* This class calculates derivatives of g given implicitly by
f(h(g*(y,u,σ),σ),g(y,u,σ),y,u), where h(y,σ) is given from outside.
Structurally, the class is very similar to KOrder, but calculations are much
easier. The two constructors construct an object from sparse derivatives of
f, and derivatives of h. The caller must ensure that the both derivatives
are done at the same point.
The calculation for order k (including k=1) is done by a call
performStep(k). The derivatives can be retrived by getFoldDers() or
getUnfoldDers(). */
class KOrderStoch
{
protected:
IntSequence nvs;
PartitionY ypart;
Journal &journal;
UGSContainer _ug;
FGSContainer _fg;
UGSContainer _ugs;
FGSContainer _fgs;
UGSContainer _uG;
FGSContainer _fG;
const UGSContainer *_uh;
const FGSContainer *_fh;
UnfoldedZXContainer _uZstack;
FoldedZXContainer _fZstack;
UnfoldedGXContainer _uGstack;
FoldedGXContainer _fGstack;
const TensorContainer<FSSparseTensor> &f;
MatrixAA matA;
public:
KOrderStoch(const PartitionY &ypart, int nu, const TensorContainer<FSSparseTensor> &fcont,
const FGSContainer &hh, Journal &jr);
KOrderStoch(const PartitionY &ypart, int nu, const TensorContainer<FSSparseTensor> &fcont,
const UGSContainer &hh, Journal &jr);
template<Storage t>
void performStep(int order);
const FGSContainer &
getFoldDers() const
{
return _fg;
}
const UGSContainer &
getUnfoldDers() const
{
return _ug;
}
protected:
template<Storage t>
std::unique_ptr<typename ctraits<t>::Ttensor> faaDiBrunoZ(const Symmetry &sym) const;
template<Storage t>
std::unique_ptr<typename ctraits<t>::Ttensor> faaDiBrunoG(const Symmetry &sym) const;
// Convenience access methods
template<Storage t>
typename ctraits<t>::Tg &g();
template<Storage t>
const typename ctraits<t>::Tg &g() const;
template<Storage t>
typename ctraits<t>::Tgs &gs();
template<Storage t>
const typename ctraits<t>::Tgs &gs() const;
template<Storage t>
const typename ctraits<t>::Tgss &h() const;
template<Storage t>
typename ctraits<t>::TG &G();
template<Storage t>
const typename ctraits<t>::TG &G() const;
template<Storage t>
typename ctraits<t>::TZXstack &Zstack();
template<Storage t>
const typename ctraits<t>::TZXstack &Zstack() const;
template<Storage t>
typename ctraits<t>::TGXstack &Gstack();
template<Storage t>
const typename ctraits<t>::TGXstack &Gstack() const;
};
/* This calculates a derivative of f(G(y,u,σ),g(y,u,σ),y,u) of a given
symmetry. */
template<Storage t>
std::unique_ptr<typename ctraits<t>::Ttensor>
KOrderStoch::faaDiBrunoZ(const Symmetry &sym) const
{
JournalRecordPair pa(journal);
pa << u8"Faà Di Bruno ZX container for " << sym << endrec;
auto res = std::make_unique<typename ctraits<t>::Ttensor>(ypart.ny(), TensorDimens(sym, nvs));
FaaDiBruno bruno(journal);
bruno.calculate(Zstack<t>(), f, *res);
return res;
}
/* This calculates a derivative of G(y,u,σ)=h(g*(y,u,σ),σ) of a given
symmetry. */
template<Storage t>
std::unique_ptr<typename ctraits<t>::Ttensor>
KOrderStoch::faaDiBrunoG(const Symmetry &sym) const
{
JournalRecordPair pa(journal);
pa << u8"Faà Di Bruno GX container for " << sym << endrec;
TensorDimens tdims(sym, nvs);
auto res = std::make_unique<typename ctraits<t>::Ttensor>(ypart.nyss(), tdims);
FaaDiBruno bruno(journal);
bruno.calculate(Gstack<t>(), h<t>(), *res);
return res;
}
/* This retrieves all g derivatives of a given dimension from implicit
f(h(g*(y,u,σ),σ),g(y,u,σ),y,u). It supposes that all derivatives of smaller
dimensions have been retrieved.
So, we go through all symmetries s, calculate Gₛ conditional on gₛ=0, insert
the derivative to the G container, then calculate Fₛ conditional on gₛ=0.
This is a righthand side. The left hand side is matA·gₛ. The gₛ is retrieved
as gₛ=-matA⁻¹·RHS. Finally we have to update Gₛ by calling
Gstack<t>().multAndAdd(1, h<t>(), *G_sym_ptr). */
template<Storage t>
void
KOrderStoch::performStep(int order)
{
int maxd = g<t>().getMaxDim();
KORD_RAISE_IF(order-1 != maxd && (order != 1 || maxd != -1),
"Wrong order for KOrderStoch::performStep");
for (auto &si : SymmetrySet(order, 4))
if (si[2] == 0)
{
JournalRecordPair pa(journal);
pa << "Recovering symmetry " << si << endrec;
auto G_sym = faaDiBrunoG<t>(si);
auto G_sym_ptr = G_sym.get();
G<t>().insert(std::move(G_sym));
auto g_sym = faaDiBrunoZ<t>(si);
auto g_sym_ptr = g_sym.get();
g_sym->mult(-1.0);
matA.multInv(*g_sym);
g<t>().insert(std::move(g_sym));
gs<t>().insert(std::make_unique<typename ctraits<t>::Ttensor>(ypart.nstat, ypart.nys(),
*g_sym_ptr));
Gstack<t>().multAndAdd(1, h<t>(), *G_sym_ptr);
}
}