dynare/dynare++/kord/decision_rule.hh

1083 lines
36 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2004 Ondra Kamenik
* Copyright © 2019 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
// Decision rule and simulation
/* The main purpose of this file is a decision rule representation which can
run a simulation. So we define an interface for classes providing
realizations of random shocks, and define the class DecisionRule. The latter
basically takes tensor container of derivatives of policy rules, and adds
them up with respect to σ. The class allows to specify the σ different from
1.
In addition, we provide classes for running simulations and storing the
results, calculating some statistics and generating IRF. The class
DRFixPoint allows for calculation of the fix point of a given decision
rule. */
#ifndef DECISION_RULE_H
#define DECISION_RULE_H
#include <matio.h>
#include "kord_exception.hh"
#include "korder.hh"
#include "normal_conjugate.hh"
#include <memory>
#include <random>
#include <string>
/* This is a general interface to a shock realizations. The interface has only
one method returning the shock realizations at the given time. This method
is not constant, since it may change a state of the object. */
class ShockRealization
{
public:
virtual ~ShockRealization() = default;
virtual void get(int n, Vector &out) = 0;
virtual int numShocks() const = 0;
};
/* This class is an abstract interface to decision rule. Its main purpose is to
define a common interface for simulation of a decision rule. We need only a
simulate, evaluate, centralized clone and output method. */
class DecisionRule
{
public:
enum class emethod { horner, trad };
virtual ~DecisionRule() = default;
// simulates the rule for a given realization of the shocks
virtual TwoDMatrix simulate(emethod em, int np, const ConstVector &ystart,
ShockRealization &sr) const = 0;
/* primitive evaluation (it takes a vector of state variables (predetermined,
both and shocks) and returns the next period variables. Both input and
output are in deviations from the rule's steady. */
virtual void eval(emethod em, Vector &out, const ConstVector &v) const = 0;
/* makes only one step of simulation (in terms of absolute values, not
deviations) */
virtual void evaluate(emethod em, Vector &out, const ConstVector &ys,
const ConstVector &u) const = 0;
// writes the decision rule to the MAT file
virtual void writeMat(mat_t *fd, const std::string &prefix) const = 0;
/* returns a new copy of the decision rule, which is centralized about
provided fix-point */
virtual std::unique_ptr<DecisionRule> centralizedClone(const Vector &fixpoint) const = 0;
virtual const Vector &getSteady() const = 0;
virtual int nexog() const = 0;
virtual const PartitionY &getYPart() const = 0;
};
/* The main purpose of this class is to implement DecisionRule interface, which
is a simulation. To be able to do this we have to know the partitioning of
state vector y since we will need to pick only predetermined part y*. Also,
we need to know the steady state.
The decision rule will take the form:
ₙ ᵢ ⎡y*ₜ₋₁ ȳ*⎤αₘ
yₜ ȳ = ∑ [g_(yu)ⁱ]_α₁…αᵢ ∏ ⎢ ⎥
ⁱ⁼⁰ ᵐ⁼¹ ⎣ uₜ ⎦
where the tensors [g_(yu)ⁱ] are tensors of the constructed container, and ȳ
is the steady state.
If we know the fix point of the rule (conditional zero shocks) ỹ, the rule
can be transformed to so called “centralized” form. This is very similar to
the form above but the zero dimensional tensor is zero:
ₙ ᵢ ⎡y*ₜ₋₁ ỹ*⎤αₘ
yₜ ỹ = ∑ [g_(yu)ⁱ]_α₁…αᵢ ∏ ⎢ ⎥
ⁱ⁼¹ ᵐ⁼¹ ⎣ uₜ ⎦
We provide a method and a constructor to transform a rule to the centralized
form.
The class is templated, the template argument is either Storage::fold or
Storage::unfold. So, there are two implementations of the DecisionRule
interface. */
template<Storage t>
class DecisionRuleImpl : public ctraits<t>::Tpol, public DecisionRule
{
protected:
using _Tpol = typename ctraits<t>::Tpol;
using _Tg = typename ctraits<t>::Tg;
using _Ttensor = typename ctraits<t>::Ttensor;
using _Ttensym = typename ctraits<t>::Ttensym;
const Vector ysteady;
const PartitionY ypart;
const int nu;
public:
DecisionRuleImpl(const _Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: ctraits<t>::Tpol(pol), ysteady(ys), ypart(yp), nu(nuu)
{
}
DecisionRuleImpl(_Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: ctraits<t>::Tpol(0, yp.ny(), pol), ysteady(ys), ypart(yp),
nu(nuu)
{
}
DecisionRuleImpl(const _Tg &g, const PartitionY &yp, int nuu,
const ConstVector &ys, double sigma)
: ctraits<t>::Tpol(yp.ny(), yp.nys()+nuu), ysteady(ys), ypart(yp), nu(nuu)
{
fillTensors(g, sigma);
}
DecisionRuleImpl(const DecisionRuleImpl<t> &dr, const ConstVector &fixpoint)
: ctraits<t>::Tpol(dr.ypart.ny(), dr.ypart.nys()+dr.nu),
ysteady(fixpoint), ypart(dr.ypart), nu(dr.nu)
{
centralize(dr);
}
const Vector &
getSteady() const override
{
return ysteady;
}
TwoDMatrix simulate(emethod em, int np, const ConstVector &ystart,
ShockRealization &sr) const override;
void evaluate(emethod em, Vector &out, const ConstVector &ys,
const ConstVector &u) const override;
std::unique_ptr<DecisionRule> centralizedClone(const Vector &fixpoint) const override;
void writeMat(mat_t *fd, const std::string &prefix) const override;
int
nexog() const override
{
return nu;
}
const PartitionY &
getYPart() const override
{
return ypart;
}
protected:
void fillTensors(const _Tg &g, double sigma);
void centralize(const DecisionRuleImpl &dr);
public:
void eval(emethod em, Vector &out, const ConstVector &v) const override;
};
/* Here we have to fill the tensor polynomial. This involves two separated
actions. The first is to evaluate the approximation at a given σ, the second
is to compile the tensors [g_(yu)ⁱ⁺ʲ] from [g_yⁱuʲ]. The first action is
done here, the second is done by method addSubTensor() of a full symmetry
tensor.
The way how the evaluation is done is described here:
The q-order approximation to the solution can be written as:
⎡ ⎤
q 1 ⎢ ⎛ l ⎞⎡ ⎤ ᵢ ⎡ ⎤αₘ ⱼ ⎡ ⎤βₘ ⎥
yₜ ȳ = ∑ ──⎢ ∑ ⎢ ⎥⎢g_yⁱuʲσᵏ⎥ ∏ ⎢y*ₜ₋₁ ȳ*⎥ ∏ ⎢uₜ⎥ σᵏ⎥
ˡ⁼¹ l!⎢ⁱ⁺ʲ⁺ᵏ⁼ˡ⎝i,j,k⎠⎣ ⎦α₁…αⱼβ₁…βⱼ ᵐ⁼¹⎣ ⎦ ᵐ⁼¹⎣ ⎦ ⎥
⎣ ⎦
⎡ ⎡ ⎤ ⎤
q ⎢ ⎛i+j⎞⎢ₗ₋ᵢ₋ⱼ 1 ⎛l⎞ ⎡ ⎤ ⎥ ᵢ ⎡ ⎤αₘ ⱼ ⎡ ⎤βₘ⎥
= ∑ ⎢ ∑ ⎢ ⎥⎢ ∑ ── ⎢ ⎥ ⎢g_yⁱuʲσᵏ⎥ σᵏ⎥ ∏ ⎢y*ₜ₋₁ ȳ*⎥ ∏ ⎢uₜ⎥ ⎥
ˡ⁼¹⎢i+j≤l ⎝ i ⎠⎢ ᵏ⁼⁰ l! ⎝k⎠ ⎣ ⎦α₁…αⱼβ₁…βⱼ ⎥ ᵐ⁼¹⎣ ⎦ ᵐ⁼¹⎣ ⎦ ⎥
⎣ ⎣ ⎦ ⎦
This means that for each i+j+k=l we have to add
1 ⎛l⎞ 1
── ⎢ ⎥ [g_yⁱuʲσᵏ]·σᵏ = ──────── [g_yⁱuʲσᵏ]·σᵏ
l! ⎝k⎠ (i+j)!k!
to [g_(yu)ⁱ⁺ʲ].
⎛i+j⎞
In addition, note that the multiplier ⎝ k ⎠ is applied when the fully symmetric
tensor [g_(yu)ⁱ⁺ʲ] is evaluated.
So we go through i+j=d=0…q and in each loop we form the fully symmetric
tensor [g_(yu)ᵈ] and insert it to the container. */
template<Storage t>
void
DecisionRuleImpl<t>::fillTensors(const _Tg &g, double sigma)
{
IntSequence tns{ypart.nys(), nu};
int dfact = 1;
for (int d = 0; d <= g.getMaxDim(); d++, dfact *= d)
{
auto g_yud = std::make_unique<_Ttensym>(ypart.ny(), ypart.nys()+nu, d);
g_yud->zeros();
// fill tensor of g_yud of dimension d
/* Here we have to fill the tensor [g_(yu)ᵈ]. So we go through all pairs
(i,j) such that i+j=d, and through all k from zero up to maximal
dimension minus d. In this way we go through all symmetries of
[g_yⁱuʲσᵏ] which will be added to [g_(yu)ᵈ].
Note that at the beginning, dfact is a factorial of d. We
calculate kfact is equal to k!. As indicated in
DecisionRuleImpl::fillTensors(), the added tensor is thus multiplied
with 1/(d!k!)·σᵏ. */
for (int i = 0; i <= d; i++)
{
int j = d-i;
int kfact = 1;
_Ttensor tmp(ypart.ny(),
TensorDimens(Symmetry{i, j}, tns));
tmp.zeros();
for (int k = 0; k+d <= g.getMaxDim(); k++, kfact *= k)
{
Symmetry sym{i, j, 0, k};
if (g.check(sym))
{
double mult = pow(sigma, k)/dfact/kfact;
tmp.add(mult, g.get(sym));
}
}
g_yud->addSubTensor(tmp);
}
this->insert(std::move(g_yud));
}
}
/* The centralization is straightforward. We suppose here that the objects
steady state is the fix point ỹ. It is clear that the new derivatives
[g~_(yu)ⁱ] will be equal to the derivatives of the original decision rule
dr at the new steady state ỹ. So, the new derivatives are obtained by
derivating the given decision rule dr and evaluating its polynomial at:
⎡ỹ* ȳ*⎤
dstate = ⎢ ⎥,
⎣ 0 ⎦
where ȳ is the steady state of the original rule dr. */
template<Storage t>
void
DecisionRuleImpl<t>::centralize(const DecisionRuleImpl &dr)
{
Vector dstate(ypart.nys() + nu);
dstate.zeros();
Vector dstate_star(dstate, 0, ypart.nys());
ConstVector newsteady_star(ysteady, ypart.nstat, ypart.nys());
ConstVector oldsteady_star(dr.ysteady, ypart.nstat, ypart.nys());
dstate_star.add(1.0, newsteady_star);
dstate_star.add(-1.0, oldsteady_star);
_Tpol pol(dr);
int dfac = 1;
for (int d = 1; d <= dr.getMaxDim(); d++, dfac *= d)
{
pol.derivative(d-1);
auto der = pol.evalPartially(d, dstate);
der->mult(1.0/dfac);
this->insert(std::move(der));
}
}
/* Here we evaluate repeatedly the polynomial storing results in the created
matrix. For exogenous shocks, we use ShockRealization class, for
predetermined variables, we use ystart as the first state. The ystart
vector is required to be all state variables ypart.ny(), although only the
predetermined part of ystart is used.
We simulate in terms of Δy, this is, at the beginning the ysteady is
canceled from ystart, we simulate, and at the end ysteady is added to
all columns of the result. */
template<Storage t>
TwoDMatrix
DecisionRuleImpl<t>::simulate(emethod em, int np, const ConstVector &ystart,
ShockRealization &sr) const
{
KORD_RAISE_IF(ysteady.length() != ystart.length(),
"Start and steady lengths differ in DecisionRuleImpl::simulate");
TwoDMatrix res(ypart.ny(), np);
// initialize vectors and subvectors for simulation
/* Here allocate the stack vector (Δy*,u), define the subvectors dy, and
u, then we pickup predetermined parts of ystart and ysteady. */
Vector dyu(ypart.nys()+nu);
ConstVector ystart_pred(ystart, ypart.nstat, ypart.nys());
ConstVector ysteady_pred(ysteady, ypart.nstat, ypart.nys());
Vector dy(dyu, 0, ypart.nys());
Vector u(dyu, ypart.nys(), nu);
// perform the first step of simulation
/* We cancel ysteady from ystart, get realization to u, and evaluate
the polynomial. */
dy = ystart_pred;
dy.add(-1.0, ysteady_pred);
sr.get(0, u);
Vector out{res.getCol(0)};
eval(em, out, dyu);
// perform all other steps of simulations
/* Also clear. If the result at some period is not finite, we pad the rest of
the matrix with zeros. */
int i = 1;
while (i < np)
{
ConstVector ym{res.getCol(i-1)};
ConstVector dym(ym, ypart.nstat, ypart.nys());
dy = dym;
sr.get(i, u);
Vector out{res.getCol(i)};
eval(em, out, dyu);
if (!out.isFinite())
{
if (i+1 < np)
{
TwoDMatrix rest(res, i+1, np-i-1);
rest.zeros();
}
break;
}
i++;
}
// add the steady state to columns of res
/* Even clearer. We add the steady state to the numbers computed above and
leave the padded columns to zero. */
for (int j = 0; j < i; j++)
{
Vector col{res.getCol(j)};
col.add(1.0, ysteady);
}
return res;
}
/* This is one period evaluation of the decision rule. The simulation is a
sequence of repeated one period evaluations with a difference, that the
steady state (fix point) is cancelled and added once. Hence we have two
special methods. */
template<Storage t>
void
DecisionRuleImpl<t>::evaluate(emethod em, Vector &out, const ConstVector &ys,
const ConstVector &u) const
{
KORD_RAISE_IF(ys.length() != ypart.nys() || u.length() != nu,
"Wrong dimensions of input vectors in DecisionRuleImpl::evaluate");
KORD_RAISE_IF(out.length() != ypart.ny(),
"Wrong dimension of output vector in DecisionRuleImpl::evaluate");
ConstVector ysteady_pred(ysteady, ypart.nstat, ypart.nys());
Vector ys_u(ypart.nys()+nu);
Vector ys_u1(ys_u, 0, ypart.nys());
ys_u1 = ys;
ys_u1.add(-1.0, ysteady_pred);
Vector ys_u2(ys_u, ypart.nys(), nu);
ys_u2 = u;
eval(em, out, ys_u);
out.add(1.0, ysteady);
}
/* This is easy. We just return the newly created copy using the centralized
constructor. */
template<Storage t>
std::unique_ptr<DecisionRule>
DecisionRuleImpl<t>::centralizedClone(const Vector &fixpoint) const
{
return std::make_unique<DecisionRuleImpl<t>>(*this, fixpoint);
}
/* Here we only encapsulate two implementations to one, deciding according to
the parameter. */
template<Storage t>
void
DecisionRuleImpl<t>::eval(emethod em, Vector &out, const ConstVector &v) const
{
if (em == emethod::horner)
_Tpol::evalHorner(out, v);
else
_Tpol::evalTrad(out, v);
}
/* Write the decision rule and steady state to the MAT file. */
template<Storage t>
void
DecisionRuleImpl<t>::writeMat(mat_t *fd, const std::string &prefix) const
{
ctraits<t>::Tpol::writeMat(fd, prefix);
TwoDMatrix dum(ysteady.length(), 1);
dum.getData() = ysteady;
ConstTwoDMatrix(dum).writeMat(fd, prefix + "_ss");
}
/* This is exactly the same as DecisionRuleImpl<Storage::fold>. The only
difference is that we have a conversion from UnfoldDecisionRule, which is
exactly DecisionRuleImpl<Storage::unfold>. */
class UnfoldDecisionRule;
class FoldDecisionRule : public DecisionRuleImpl<Storage::fold>
{
friend class UnfoldDecisionRule;
public:
FoldDecisionRule(const ctraits<Storage::fold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::fold>(pol, yp, nuu, ys)
{
}
FoldDecisionRule(ctraits<Storage::fold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::fold>(pol, yp, nuu, ys)
{
}
FoldDecisionRule(const ctraits<Storage::fold>::Tg &g, const PartitionY &yp, int nuu,
const ConstVector &ys, double sigma)
: DecisionRuleImpl<Storage::fold>(g, yp, nuu, ys, sigma)
{
}
FoldDecisionRule(const DecisionRuleImpl<Storage::fold> &dr, const ConstVector &fixpoint)
: DecisionRuleImpl<Storage::fold>(dr, fixpoint)
{
}
FoldDecisionRule(const UnfoldDecisionRule &udr);
};
/* This is exactly the same as DecisionRuleImpl<Storage::unfold>, but with a
conversion from FoldDecisionRule, which is exactly
DecisionRuleImpl<Storage::fold>. */
class UnfoldDecisionRule : public DecisionRuleImpl<Storage::unfold>
{
friend class FoldDecisionRule;
public:
UnfoldDecisionRule(const ctraits<Storage::unfold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::unfold>(pol, yp, nuu, ys)
{
}
UnfoldDecisionRule(ctraits<Storage::unfold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::unfold>(pol, yp, nuu, ys)
{
}
UnfoldDecisionRule(const ctraits<Storage::unfold>::Tg &g, const PartitionY &yp, int nuu,
const ConstVector &ys, double sigma)
: DecisionRuleImpl<Storage::unfold>(g, yp, nuu, ys, sigma)
{
}
UnfoldDecisionRule(const DecisionRuleImpl<Storage::unfold> &dr, const ConstVector &fixpoint)
: DecisionRuleImpl<Storage::unfold>(dr, fixpoint)
{
}
UnfoldDecisionRule(const FoldDecisionRule &udr);
};
/* This class serves for calculation of the fix point of the decision rule
given that the shocks are zero. The class is very similar to the
DecisionRuleImpl. Besides the calculation of the fix point, the only
difference between DRFixPoint and DecisionRuleImpl is that the derivatives
wrt. shocks are ignored (since shocks are zero during the calculations).
That is why have a different fillTensor() method.
The solution algorithm is Newton and is described in
DRFixPoint::solveNewton(). It solves F(y)=0, where F=g(y,0)y. The function
F is given by its derivatives bigf. The Jacobian of the solved system is
given by derivatives stored in bigfder. */
template<Storage t>
class DRFixPoint : public ctraits<t>::Tpol
{
using _Tpol = typename ctraits<t>::Tpol;
using _Tg = typename ctraits<t>::Tg;
using _Ttensor = typename ctraits<t>::Ttensor;
using _Ttensym = typename ctraits<t>::Ttensym;
constexpr static int max_iter = 10000;
constexpr static int max_newton_iter = 50;
constexpr static int newton_pause = 100;
constexpr static double tol = 1e-10;
const Vector ysteady;
const PartitionY ypart;
std::unique_ptr<_Tpol> bigf;
std::unique_ptr<_Tpol> bigfder;
public:
using emethod = typename DecisionRule::emethod;
DRFixPoint(const _Tg &g, const PartitionY &yp,
const Vector &ys, double sigma);
bool calcFixPoint(emethod em, Vector &out);
int
getNumIter() const
{
return iter;
}
int
getNewtonLastIter() const
{
return newton_iter_last;
}
int
getNewtonTotalIter() const
{
return newton_iter_total;
}
protected:
void fillTensors(const _Tg &g, double sigma);
bool solveNewton(Vector &y);
private:
int iter;
int newton_iter_last;
int newton_iter_total;
};
/* Here we have to setup the function F=g(y,0)y and ∂F/∂y. The former is taken
from the given derivatives of g where a unit matrix is subtracted from the
first derivative (Symmetry{1}). Then the derivative of the F polynomial is
calculated. */
template<Storage t>
DRFixPoint<t>::DRFixPoint(const _Tg &g, const PartitionY &yp,
const Vector &ys, double sigma)
: ctraits<t>::Tpol(yp.ny(), yp.nys()),
ysteady(ys), ypart(yp)
{
fillTensors(g, sigma);
_Tpol yspol(ypart.nstat, ypart.nys(), *this);
bigf = std::make_unique<_Tpol>(const_cast<const _Tpol &>(yspol));
_Ttensym &frst = bigf->get(Symmetry{1});
for (int i = 0; i < ypart.nys(); i++)
frst.get(i, i) = frst.get(i, i) - 1;
bigfder = std::make_unique<_Tpol>(*bigf, 0);
}
/* Here we fill the tensors for the DRFixPoint class. We ignore the derivatives
[g_yⁱuʲσᵏ] for which j>0. So we go through all dimensions d, and all k
such that d+k is between the maximum dimension and d, and add
σᵏ/(d!k!)[g_yᵈσᵏ] to the tensor [g_yᵈ]. */
template<Storage t>
void
DRFixPoint<t>::fillTensors(const _Tg &g, double sigma)
{
int dfact = 1;
for (int d = 0; d <= g.getMaxDim(); d++, dfact *= d)
{
auto g_yd = std::make_unique<_Ttensym>(ypart.ny(), ypart.nys(), d);
g_yd->zeros();
int kfact = 1;
for (int k = 0; d+k <= g.getMaxDim(); k++, kfact *= k)
{
if (g.check(Symmetry{d, 0, 0, k}))
{
const _Ttensor &ten = g.get(Symmetry{d, 0, 0, k});
double mult = pow(sigma, k)/dfact/kfact;
g_yd->add(mult, ten);
}
}
this->insert(std::move(g_yd));
}
}
/* This tries to solve polynomial equation F(y)=0, where F polynomial is bigf
and its derivative is in bigfder. It returns true if the Newton converged.
The method takes the given vector as initial guess, and rewrites it with a
solution. The method guarantees to return the vector, which has smaller norm
of the residual. That is why the input/output vector y is always changed.
The method proceeds with a Newton step, if the Newton step improves the
residual error. So we track residual errors in flastnorm and fnorm
(former and current). In addition, at each step we search for an
underrelaxation parameter urelax, which improves the residual. If urelax
is less that urelax_threshold, we stop searching and stop the Newton. */
template<Storage t>
bool
DRFixPoint<t>::solveNewton(Vector &y)
{
const double urelax_threshold = 1.e-5;
Vector sol(const_cast<const Vector &>(y));
Vector delta(y.length());
newton_iter_last = 0;
bool delta_finite = true;
double flastnorm = 0.0;
double fnorm = 0.0;
bool converged = false;
double urelax = 1.0;
do
{
auto jacob = bigfder->evalPartially(1, sol);
bigf->evalHorner(delta, sol);
if (newton_iter_last == 0)
flastnorm = delta.getNorm();
delta_finite = delta.isFinite();
if (delta_finite)
{
ConstTwoDMatrix(*jacob).multInvLeft(delta);
// find urelax improving residual
/* Here we find the urelax. We cycle as long as the new residual
size fnorm is greater than last residual size flastnorm. If
the urelax is less than urelax_threshold we give up. The
urelax is damped by the ratio of flastnorm and fnorm. It the
ratio is close to one, we damp by one half. */
bool urelax_found = false;
urelax = 1.0;
while (!urelax_found && urelax > urelax_threshold)
{
Vector soltmp(const_cast<const Vector &>(sol));
soltmp.add(-urelax, delta);
Vector f(sol.length());
bigf->evalHorner(f, soltmp);
fnorm = f.getNorm();
if (fnorm <= flastnorm)
urelax_found = true;
else
urelax *= std::min(0.5, flastnorm/fnorm);
}
sol.add(-urelax, delta);
delta_finite = delta.isFinite();
}
newton_iter_last++;
converged = delta_finite && fnorm < tol;
flastnorm = fnorm;
}
while (!converged && newton_iter_last < max_newton_iter
&& urelax > urelax_threshold);
newton_iter_total += newton_iter_last;
if (!converged)
newton_iter_last = 0;
y = const_cast<const Vector &>(sol);
return converged;
}
/* This method solves the fix point of the no-shocks rule yₜ₊₁=f(yₜ). It
combines dull steps with Newton attempts. The dull steps correspond to
evaluations setting yₜ₊₁=f(yₜ). For reasonable models the dull steps
converge to the fix-point but very slowly. That is why we make Newton
attempt from time to time. The frequency of the Newton attempts is given by
newton_pause. We perform the calculations in deviations from the steady
state. So, at the end, we have to add the steady state.
The method also sets the members iter, newton_iter_last and
newton_iter_total. These numbers can be examined later.
The out vector is not touched if the algorithm has not convered. */
template<Storage t>
bool
DRFixPoint<t>::calcFixPoint(emethod em, Vector &out)
{
KORD_RAISE_IF(out.length() != ypart.ny(),
"Wrong length of out in DRFixPoint::calcFixPoint");
Vector delta(ypart.nys());
Vector ystar(ypart.nys());
ystar.zeros();
iter = 0;
newton_iter_last = 0;
newton_iter_total = 0;
bool converged = false;
do
{
if ((iter/newton_pause)*newton_pause == iter)
converged = solveNewton(ystar);
if (!converged)
{
bigf->evalHorner(delta, ystar);
KORD_RAISE_IF_X(!delta.isFinite(),
"NaN or Inf asserted in DRFixPoint::calcFixPoint",
KORD_FP_NOT_FINITE);
ystar.add(1.0, delta);
converged = delta.getNorm() < tol;
}
iter++;
}
while (iter < max_iter && !converged);
if (converged)
{
_Tpol::evalHorner(out, ystar);
out.add(1.0, ysteady);
}
return converged;
}
/* This is a basically a number of matrices of the same dimensions, which can
be obtained as simulation results from a given decision rule and shock
realizations. We also store the realizations of shocks and the starting
point of each simulation. */
class ExplicitShockRealization;
class SimResults
{
protected:
int num_y;
int num_per;
int num_burn;
std::vector<TwoDMatrix> data;
std::vector<ExplicitShockRealization> shocks;
std::vector<ConstVector> start;
public:
SimResults(int ny, int nper, int nburn = 0)
: num_y(ny), num_per(nper), num_burn(nburn)
{
}
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov, Journal &journal);
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov);
int
getNumPer() const
{
return num_per;
}
int
getNumBurn() const
{
return num_burn;
}
int
getNumSets() const
{
return static_cast<int>(data.size());
}
const TwoDMatrix &
getData(int i) const
{
return data[i];
}
const ExplicitShockRealization &
getShocks(int i) const
{
return shocks[i];
}
const ConstVector &
getStart(int i) const
{
return start[i];
}
bool addDataSet(const TwoDMatrix &d, const ExplicitShockRealization &sr, const ConstVector &st);
void writeMat(const std::string &base, const std::string &lname) const;
void writeMat(mat_t *fd, const std::string &lname) const;
};
/* This does the same as SimResults plus it calculates means and covariances of
the simulated data. */
class SimResultsStats : public SimResults
{
protected:
Vector mean;
TwoDMatrix vcov;
public:
SimResultsStats(int ny, int nper, int nburn = 0)
: SimResults(ny, nper, nburn), mean(ny), vcov(ny, ny)
{
}
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov, Journal &journal);
void writeMat(mat_t *fd, const std::string &lname) const;
protected:
void calcMean();
void calcVcov();
};
/* This does the similar thing as SimResultsStats but the statistics are not
calculated over all periods but only within each period. Then we do not
calculate covariances with periods but only variances. */
class SimResultsDynamicStats : public SimResults
{
protected:
TwoDMatrix mean;
TwoDMatrix variance;
public:
SimResultsDynamicStats(int ny, int nper, int nburn = 0)
: SimResults(ny, nper, nburn), mean(ny, nper), variance(ny, nper)
{
}
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov, Journal &journal);
void writeMat(mat_t *fd, const std::string &lname) const;
protected:
void calcMean();
void calcVariance();
};
/* This goes through control simulation results, and for each control it adds a
given impulse to a given shock and runs a simulation. The control simulation
is then cancelled and the result is stored. After that these results are
averaged with variances calculated.
The means and the variances are then written to the MAT file. */
class SimulationIRFWorker;
class SimResultsIRF : public SimResults
{
friend class SimulationIRFWorker;
protected:
const SimResults &control;
int ishock;
double imp;
TwoDMatrix means;
TwoDMatrix variances;
public:
SimResultsIRF(const SimResults &cntl, int ny, int nper, int i, double impulse)
: SimResults(ny, nper, 0), control(cntl),
ishock(i), imp(impulse),
means(ny, nper), variances(ny, nper)
{
}
void simulate(const DecisionRule &dr, Journal &journal);
void simulate(const DecisionRule &dr);
void writeMat(mat_t *fd, const std::string &lname) const;
protected:
void calcMeans();
void calcVariances();
};
/* This simulates and gathers all statistics from the real time simulations. In
the simulate() method, it runs RTSimulationWorkers which accummulate
information from their own estimates. The estimation is done by means of
NormalConj class, which is a conjugate family of densities for normal
distibutions. */
class RTSimulationWorker;
class RTSimResultsStats
{
friend class RTSimulationWorker;
protected:
Vector mean;
TwoDMatrix vcov;
int num_per;
int num_burn;
NormalConj nc;
int incomplete_simulations;
int thrown_periods;
public:
RTSimResultsStats(int ny, int nper, int nburn = 0)
: mean(ny), vcov(ny, ny),
num_per(nper), num_burn(nburn), nc(ny),
incomplete_simulations(0), thrown_periods(0)
{
}
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov, Journal &journal);
void simulate(int num_sim, const DecisionRule &dr, const Vector &start,
const TwoDMatrix &vcov);
void writeMat(mat_t *fd, const std::string &lname);
};
/* For each shock, this simulates plus and minus impulse. The class maintains a
vector of simulation results, each gets a particular shock and sign
(positive/negative). The results of type SimResultsIRF are stored in a
vector so that even ones are positive, odd ones are negative.
The constructor takes a reference to the control simulations, which must be
finished before the constructor is called. The control simulations are
passed to all SimResultsIRFs.
The constructor also takes the vector of indices of exogenous variables
(ili) for which the IRFs are generated. The list is kept (as
irf_list_ind) for other methods. */
class DynamicModel;
class IRFResults
{
std::vector<SimResultsIRF> irf_res;
const DynamicModel &model;
std::vector<int> irf_list_ind;
public:
IRFResults(const DynamicModel &mod, const DecisionRule &dr,
const SimResults &control, std::vector<int> ili,
Journal &journal);
void writeMat(mat_t *fd, const std::string &prefix) const;
};
/* This worker simulates the given decision rule and inserts the result to
SimResults. */
class SimulationWorker : public sthread::detach_thread
{
protected:
SimResults &res;
const DecisionRule &dr;
DecisionRule::emethod em;
int np;
const Vector &st;
ShockRealization &sr;
public:
SimulationWorker(SimResults &sim_res,
const DecisionRule &dec_rule,
DecisionRule::emethod emet, int num_per,
const Vector &start, ShockRealization &shock_r)
: res(sim_res), dr(dec_rule), em(emet), np(num_per), st(start), sr(shock_r)
{
}
void operator()(std::mutex &mut) override;
};
/* This worker simulates a given impulse imp to a given shock ishock based
on a given control simulation with index idata. The control simulations
are contained in SimResultsIRF which is passed to the constructor. */
class SimulationIRFWorker : public sthread::detach_thread
{
SimResultsIRF &res;
const DecisionRule &dr;
DecisionRule::emethod em;
int np;
int idata;
int ishock;
double imp;
public:
SimulationIRFWorker(SimResultsIRF &sim_res,
const DecisionRule &dec_rule,
DecisionRule::emethod emet, int num_per,
int id, int ishck, double impulse)
: res(sim_res), dr(dec_rule), em(emet), np(num_per),
idata(id), ishock(ishck), imp(impulse)
{
}
void operator()(std::mutex &mut) override;
};
/* This class does the real time simulation job for RTSimResultsStats. It
simulates the model period by period. It accummulates the information in
RTSimResultsStats::nc. If NaN or Inf is observed, it ends the simulation
and adds to the thrown_periods of RTSimResultsStats. */
class RTSimulationWorker : public sthread::detach_thread
{
protected:
RTSimResultsStats &res;
const DecisionRule &dr;
DecisionRule::emethod em;
int np;
const Vector &ystart;
ShockRealization &sr;
public:
RTSimulationWorker(RTSimResultsStats &sim_res,
const DecisionRule &dec_rule,
DecisionRule::emethod emet, int num_per,
const Vector &start, ShockRealization &shock_r)
: res(sim_res), dr(dec_rule), em(emet), np(num_per), ystart(start), sr(shock_r)
{
}
void operator()(std::mutex &mut) override;
};
/* This class generates draws from Gaussian distribution with zero mean and the
given variance-covariance matrix. It stores the factor of vcov V matrix,
yielding FFᵀ = V. */
class RandomShockRealization : virtual public ShockRealization
{
protected:
std::mt19937 mtwister;
std::normal_distribution<> dis;
TwoDMatrix factor;
public:
RandomShockRealization(const ConstTwoDMatrix &v, decltype(mtwister)::result_type iseed)
: mtwister(iseed), factor(v.nrows(), v.nrows())
{
schurFactor(v);
}
void get(int n, Vector &out) override;
int
numShocks() const override
{
return factor.nrows();
}
protected:
void choleskyFactor(const ConstTwoDMatrix &v);
void schurFactor(const ConstTwoDMatrix &v);
};
/* This is just a matrix of finite numbers. It can be constructed from any
ShockRealization with a given number of periods. */
class ExplicitShockRealization : virtual public ShockRealization
{
TwoDMatrix shocks;
public:
explicit ExplicitShockRealization(const ConstTwoDMatrix &sh)
: shocks(sh)
{
}
ExplicitShockRealization(ShockRealization &sr, int num_per);
void get(int n, Vector &out) override;
int
numShocks() const override
{
return shocks.nrows();
}
const TwoDMatrix &
getShocks() const
{
return shocks;
}
void addToShock(int ishock, int iper, double val);
void
print() const
{
shocks.print();
}
};
/* This represents a user given shock realization. The first matrix of the
constructor is a covariance matrix of shocks, the second matrix is a
rectangular matrix, where columns correspond to periods, rows to shocks. If
an element of the matrix is NaN or ±∞, then the random shock is taken
instead of that element.
In this way it is a generalization of both RandomShockRealization and
ExplicitShockRealization. */
class GenShockRealization : public RandomShockRealization, public ExplicitShockRealization
{
public:
GenShockRealization(const ConstTwoDMatrix &v, const ConstTwoDMatrix &sh, int seed)
: RandomShockRealization(v, seed), ExplicitShockRealization(sh)
{
KORD_RAISE_IF(sh.nrows() != v.nrows() || v.nrows() != v.ncols(),
"Wrong dimension of input matrix in GenShockRealization constructor");
}
void get(int n, Vector &out) override;
int
numShocks() const override
{
return RandomShockRealization::numShocks();
}
};
#endif