dynare/dynare++/integ/testing/tests.cc

551 lines
15 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2005 Ondra Kamenik
* Copyright © 2019 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include "GeneralMatrix.hh"
#include <dynlapack.h>
#include "SylvException.hh"
#include "rfs_tensor.hh"
#include "normal_moments.hh"
#include "vector_function.hh"
#include "quadrature.hh"
#include "smolyak.hh"
#include "product.hh"
#include "quasi_mcarlo.hh"
#include <iomanip>
#include <chrono>
#include <cmath>
#include <iostream>
#include <utility>
#include <array>
#include <memory>
#include <cstdlib>
/* Evaluates unfolded (Dx)ᵏ power, where x is a vector, D is a Cholesky factor
(lower triangular) */
class MomentFunction : public VectorFunction
{
GeneralMatrix D;
int k;
public:
MomentFunction(const GeneralMatrix &inD, int kk)
: VectorFunction(inD.nrows(), UFSTensor::calcMaxOffset(inD.nrows(), kk)),
D(inD), k(kk)
{
}
MomentFunction(const MomentFunction &func) = default;
std::unique_ptr<VectorFunction>
clone() const override
{
return std::make_unique<MomentFunction>(*this);
}
void eval(const Vector &point, const ParameterSignal &sig, Vector &out) override;
};
void
MomentFunction::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
if (point.length() != indim() || out.length() != outdim())
{
std::cerr << "Wrong length of vectors in MomentFunction::eval" << std::endl;
std::exit(EXIT_FAILURE);
}
Vector y(point);
y.zeros();
D.multaVec(y, point);
URSingleTensor ypow(y, k);
out.zeros();
out.add(1.0, ypow.getData());
}
class TensorPower : public VectorFunction
{
int k;
public:
TensorPower(int nvar, int kk)
: VectorFunction(nvar, UFSTensor::calcMaxOffset(nvar, kk)), k(kk)
{
}
TensorPower(const TensorPower &func) = default;
std::unique_ptr<VectorFunction>
clone() const override
{
return std::make_unique<TensorPower>(*this);
}
void eval(const Vector &point, const ParameterSignal &sig, Vector &out) override;
};
void
TensorPower::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
if (point.length() != indim() || out.length() != outdim())
{
std::cerr << "Wrong length of vectors in TensorPower::eval" << std::endl;
std::exit(EXIT_FAILURE);
}
URSingleTensor ypow(point, k);
out.zeros();
out.add(1.0, ypow.getData());
}
/* Evaluates (1+1/d)ᵈ(x₁·…·x_d)^(1/d), its integral over [0,1]ᵈ
is 1.0, and its variation grows exponentially */
class Function1 : public VectorFunction
{
int dim;
public:
Function1(int d)
: VectorFunction(d, 1), dim(d)
{
}
Function1(const Function1 &f)
: VectorFunction(f.indim(), f.outdim()), dim(f.dim)
{
}
std::unique_ptr<VectorFunction>
clone() const override
{
return std::make_unique<Function1>(*this);
}
void eval(const Vector &point, const ParameterSignal &sig, Vector &out) override;
};
void
Function1::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
if (point.length() != dim || out.length() != 1)
{
std::cerr << "Wrong length of vectors in Function1::eval" << std::endl;
std::exit(EXIT_FAILURE);
}
double r = 1;
for (int i = 0; i < dim; i++)
r *= point[i];
r = pow(r, 1.0/dim);
r *= pow(1.0 + 1.0/dim, static_cast<double>(dim));
out[0] = r;
}
// Evaluates Function1 but with transformation xᵢ=0.5(yᵢ+1)
// This makes the new function integrate over [1,1]ᵈ to 1.0
class Function1Trans : public Function1
{
public:
Function1Trans(int d)
: Function1(d)
{
}
Function1Trans(const Function1Trans &func) = default;
std::unique_ptr<VectorFunction>
clone() const override
{
return std::make_unique<Function1Trans>(*this);
}
void eval(const Vector &point, const ParameterSignal &sig, Vector &out) override;
};
void
Function1Trans::eval(const Vector &point, const ParameterSignal &sig, Vector &out)
{
Vector p(point.length());
for (int i = 0; i < p.length(); i++)
p[i] = 0.5*(point[i]+1);
Function1::eval(p, sig, out);
out.mult(pow(0.5, indim()));
}
/* WallTimer class. Constructor saves the wall time, destructor cancels the
current time from the saved, and prints the message with time information */
class WallTimer
{
std::string mes;
std::chrono::time_point<std::chrono::high_resolution_clock> start;
bool new_line;
public:
WallTimer(std::string m, bool nl = true)
: mes{m}, start{std::chrono::high_resolution_clock::now()}, new_line{nl}
{
}
~WallTimer()
{
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> duration = end - start;
std::cout << mes << std::setw(8) << std::setprecision(4) << duration.count();
if (new_line)
std::cout << std::endl;
}
};
/****************************************************/
/* declaration of TestRunnable class */
/****************************************************/
class TestRunnable
{
public:
const std::string name;
int dim; // dimension of the solved problem
int nvar; // number of variables of the solved problem
TestRunnable(std::string name_arg, int d, int nv)
: name{move(name_arg)}, dim(d), nvar(nv)
{
}
virtual ~TestRunnable() = default;
bool test() const;
virtual bool run() const = 0;
protected:
static bool smolyak_normal_moments(const GeneralMatrix &m, int imom, int level);
static bool product_normal_moments(const GeneralMatrix &m, int imom, int level);
static bool qmc_normal_moments(const GeneralMatrix &m, int imom, int level);
static bool smolyak_product_cube(const VectorFunction &func, const Vector &res,
double tol, int level);
static bool qmc_cube(const VectorFunction &func, double res, double tol, int level);
};
bool
TestRunnable::test() const
{
std::cout << "Running test <" << name << ">" << std::endl;
bool passed;
{
WallTimer tim("Wall clock time ", false);
passed = run();
}
if (passed)
{
std::cout << "............................ passed" << std::endl << std::endl;
return passed;
}
else
{
std::cout << "............................ FAILED" << std::endl << std::endl;
return passed;
}
}
/****************************************************/
/* definition of TestRunnable static methods */
/****************************************************/
bool
TestRunnable::smolyak_normal_moments(const GeneralMatrix &m, int imom, int level)
{
// First make m·mᵀ and then Cholesky factor
GeneralMatrix msq(m * transpose(m));
// Make vector function
int dim = m.nrows();
TensorPower tp(dim, imom);
GaussConverterFunction func(tp, msq);
// Smolyak quadrature
Vector smol_out(UFSTensor::calcMaxOffset(dim, imom));
{
WallTimer tim("\tSmolyak quadrature time: ");
GaussHermite gs;
SmolyakQuadrature quad(dim, level, gs);
quad.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, smol_out);
std::cout << "\tNumber of Smolyak evaluations: " << quad.numEvals(level) << std::endl;
}
// Check against theoretical moments
UNormalMoments moments(imom, msq);
smol_out.add(-1.0, moments.get(Symmetry{imom}).getData());
std::cout << "\tError: " << std::setw(16) << std::setprecision(12) << smol_out.getMax() << std::endl;
return smol_out.getMax() < 1.e-7;
}
bool
TestRunnable::product_normal_moments(const GeneralMatrix &m, int imom, int level)
{
// First make m·mᵀ and then Cholesky factor
GeneralMatrix msq(m * transpose(m));
// Make vector function
int dim = m.nrows();
TensorPower tp(dim, imom);
GaussConverterFunction func(tp, msq);
// Product quadrature
Vector prod_out(UFSTensor::calcMaxOffset(dim, imom));
{
WallTimer tim("\tProduct quadrature time: ");
GaussHermite gs;
ProductQuadrature quad(dim, gs);
quad.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, prod_out);
std::cout << "\tNumber of product evaluations: " << quad.numEvals(level) << std::endl;
}
// Check against theoretical moments
UNormalMoments moments(imom, msq);
prod_out.add(-1.0, moments.get(Symmetry{imom}).getData());
std::cout << "\tError: " << std::setw(16) << std::setprecision(12) << prod_out.getMax() << std::endl;
return prod_out.getMax() < 1.e-7;
}
bool
TestRunnable::smolyak_product_cube(const VectorFunction &func, const Vector &res,
double tol, int level)
{
if (res.length() != func.outdim())
{
std::cerr << "Incompatible dimensions of check value and function." << std::endl;
std::exit(EXIT_FAILURE);
}
GaussLegendre glq;
Vector out(func.outdim());
double smol_error;
double prod_error;
{
WallTimer tim("\tSmolyak quadrature time: ");
SmolyakQuadrature quad(func.indim(), level, glq);
quad.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, out);
out.add(-1.0, res);
smol_error = out.getMax();
std::cout << "\tNumber of Smolyak evaluations: " << quad.numEvals(level) << std::endl;
std::cout << "\tError: " << std::setw(16) << std::setprecision(12) << smol_error << std::endl;
}
{
WallTimer tim("\tProduct quadrature time: ");
ProductQuadrature quad(func.indim(), glq);
quad.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, out);
out.add(-1.0, res);
prod_error = out.getMax();
std::cout << "\tNumber of product evaluations: " << quad.numEvals(level) << std::endl;
std::cout << "\tError: " << std::setw(16) << std::setprecision(12) << prod_error << std::endl;
}
return smol_error < tol && prod_error < tol;
}
bool
TestRunnable::qmc_cube(const VectorFunction &func, double res, double tol, int level)
{
Vector r(1);
double error1;
{
WallTimer tim("\tQuasi-Monte Carlo (Warnock scrambling) time: ");
WarnockPerScheme wps;
QMCarloCubeQuadrature qmc(func.indim(), level, wps);
qmc.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, r);
error1 = std::max(res - r[0], r[0] - res);
std::cout << "\tQuasi-Monte Carlo (Warnock scrambling) error: " << std::setw(16) << std::setprecision(12) << error1 << std::endl;
}
double error2;
{
WallTimer tim("\tQuasi-Monte Carlo (reverse scrambling) time: ");
ReversePerScheme rps;
QMCarloCubeQuadrature qmc(func.indim(), level, rps);
qmc.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, r);
error2 = std::max(res - r[0], r[0] - res);
std::cout << "\tQuasi-Monte Carlo (reverse scrambling) error: " << std::setw(16) << std::setprecision(12) << error2 << std::endl;
}
double error3;
{
WallTimer tim("\tQuasi-Monte Carlo (no scrambling) time: ");
IdentityPerScheme ips;
QMCarloCubeQuadrature qmc(func.indim(), level, ips);
qmc.integrate(func, level, sthread::detach_thread_group::max_parallel_threads, r);
error3 = std::max(res - r[0], r[0] - res);
std::cout << "\tQuasi-Monte Carlo (no scrambling) error: " << std::setw(16) << std::setprecision(12) << error3 << std::endl;
}
return error1 < tol && error2 < tol && error3 < tol;
}
/****************************************************/
/* definition of TestRunnable subclasses */
/****************************************************/
class SmolyakNormalMom1 : public TestRunnable
{
public:
SmolyakNormalMom1()
: TestRunnable("Smolyak normal moments (dim=2, level=4, order=4)", 4, 2)
{
}
bool
run() const override
{
GeneralMatrix m(2, 2);
m.zeros();
m.get(0, 0) = 1;
m.get(1, 1) = 1;
return smolyak_normal_moments(m, 4, 4);
}
};
class SmolyakNormalMom2 : public TestRunnable
{
public:
SmolyakNormalMom2()
: TestRunnable("Smolyak normal moments (dim=3, level=8, order=8)", 8, 3)
{
}
bool
run() const override
{
GeneralMatrix m(3, 3);
m.zeros();
m.get(0, 0) = 1;
m.get(0, 2) = 0.5;
m.get(1, 1) = 1;
m.get(1, 0) = 0.5;
m.get(2, 2) = 2;
m.get(2, 1) = 4;
return smolyak_normal_moments(m, 8, 8);
}
};
class ProductNormalMom1 : public TestRunnable
{
public:
ProductNormalMom1()
: TestRunnable("Product normal moments (dim=2, level=4, order=4)", 4, 2)
{
}
bool
run() const override
{
GeneralMatrix m(2, 2);
m.zeros();
m.get(0, 0) = 1;
m.get(1, 1) = 1;
return product_normal_moments(m, 4, 4);
}
};
class ProductNormalMom2 : public TestRunnable
{
public:
ProductNormalMom2()
: TestRunnable("Product normal moments (dim=3, level=8, order=8)", 8, 3)
{
}
bool
run() const override
{
GeneralMatrix m(3, 3);
m.zeros();
m.get(0, 0) = 1;
m.get(0, 2) = 0.5;
m.get(1, 1) = 1;
m.get(1, 0) = 0.5;
m.get(2, 2) = 2;
m.get(2, 1) = 4;
return product_normal_moments(m, 8, 8);
}
};
// Note that here we pass 1,1 to tls since smolyak has its own PascalTriangle
class F1GaussLegendre : public TestRunnable
{
public:
F1GaussLegendre()
: TestRunnable("Function1 Gauss-Legendre (dim=6, level=13", 1, 1)
{
}
bool
run() const override
{
Function1Trans f1(6);
Vector res(1);
res[0] = 1.0;
return smolyak_product_cube(f1, res, 1e-2, 13);
}
};
class F1QuasiMCarlo : public TestRunnable
{
public:
F1QuasiMCarlo()
: TestRunnable("Function1 Quasi-Monte Carlo (dim=6, level=1000000)", 1, 1)
{
}
bool
run() const override
{
Function1 f1(6);
return qmc_cube(f1, 1.0, 1.e-4, 1000000);
}
};
int
main()
{
std::vector<std::unique_ptr<TestRunnable>> all_tests;
// Fill in vector of all tests
all_tests.push_back(std::make_unique<SmolyakNormalMom1>());
all_tests.push_back(std::make_unique<SmolyakNormalMom2>());
all_tests.push_back(std::make_unique<ProductNormalMom1>());
all_tests.push_back(std::make_unique<ProductNormalMom2>());
all_tests.push_back(std::make_unique<F1GaussLegendre>());
all_tests.push_back(std::make_unique<F1QuasiMCarlo>());
// Find maximum dimension and maximum nvar
int dmax = 0;
int nvmax = 0;
for (const auto &test : all_tests)
{
dmax = std::max(dmax, test->dim);
nvmax = std::max(nvmax, test->nvar);
}
TLStatic::init(dmax, nvmax); // initialize library
// Launch the tests
int success = 0;
for (const auto &test : all_tests)
{
try
{
if (test->test())
success++;
}
catch (const TLException &e)
{
std::cout << "Caught TL exception in <" << test->name << ">:" << std::endl;
e.print();
}
catch (SylvException &e)
{
std::cout << "Caught Sylv exception in <" << test->name << ">:" << std::endl;
e.printMessage();
}
}
int nfailed = all_tests.size() - success;
std::cout << "There were " << nfailed << " tests that failed out of "
<< all_tests.size() << " tests run." << std::endl;
if (nfailed)
return EXIT_FAILURE;
else
return EXIT_SUCCESS;
}