dynare/dynare++/integ/cc/quasi_mcarlo.cc

215 lines
5.4 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2005 Ondra Kamenik
* Copyright © 2019 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include "quasi_mcarlo.hh"
#include <cmath>
#include <iostream>
#include <iomanip>
#include <array>
/* Here in the constructor, we have to calculate a maximum length of coeff
array for a given base and given maximum maxn. After allocation, we
calculate the coefficients. */
RadicalInverse::RadicalInverse(int n, int b, int mxn)
: num(n), base(b), maxn(mxn),
coeff(static_cast<int>(floor(log(static_cast<double>(maxn))/log(static_cast<double>(b)))+2), 0)
{
int nr = num;
j = -1;
do
{
j++;
coeff[j] = nr % base;
nr = nr / base;
}
while (nr > 0);
}
/* This evaluates the radical inverse. If there was no permutation, we have to
calculate:
c₀ c₁ cⱼ
── + ── + … + ────
b b² bʲ⁺¹
which is evaluated as:
⎛ ⎛⎛cⱼ 1 cⱼ₋₁⎞ 1 cⱼ₋₂⎞ ⎞ 1 c₀
⎢…⎢⎢──·─ + ────⎥·─ + ────⎥…⎥·─ + ──
⎝ ⎝⎝ b b b ⎠ b b ⎠ ⎠ b b
Now with permutation π, we have:
⎛ ⎛⎛π(cⱼ) 1 π(cⱼ₋₁)⎞ 1 π(cⱼ₋₂)⎞ ⎞ 1 π(c₀)
⎢…⎢⎢─────·─ + ───────⎥·─ + ───────⎥…⎥·─ + ─────
⎝ ⎝⎝ b b b ⎠ b b ⎠ ⎠ b b
*/
double
RadicalInverse::eval(const PermutationScheme &p) const
{
double res = 0;
for (int i = j; i >= 0; i--)
{
int cper = p.permute(i, base, coeff[i]);
res = (cper + res)/base;
}
return res;
}
/* We just add 1 to the lowest coefficient and check for overflow with respect
to the base. */
void
RadicalInverse::increase()
{
// TODO: raise if num+1 > maxn
num++;
int i = 0;
coeff[i]++;
while (coeff[i] == base)
{
coeff[i] = 0;
coeff[++i]++;
}
if (i > j)
j = i;
}
/* Debug print. */
void
RadicalInverse::print() const
{
std::cout << "n=" << num << " b=" << base << " c=";
coeff.print();
}
/* Here we have the first 170 primes. This means that we are not able to
integrate dimensions greater than 170. */
std::array<int, 170> HaltonSequence::primes =
{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541,
547, 557, 563, 569, 571, 577, 587, 593, 599, 601,
607, 613, 617, 619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691, 701, 709, 719, 727, 733,
739, 743, 751, 757, 761, 769, 773, 787, 797, 809,
811, 821, 823, 827, 829, 839, 853, 857, 859, 863,
877, 881, 883, 887, 907, 911, 919, 929, 937, 941,
947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013
};
/* This takes first dim primes and constructs dim radical inverses and
calls eval(). */
HaltonSequence::HaltonSequence(int n, int mxn, int dim, const PermutationScheme &p)
: num(n), maxn(mxn), per(p), pt(dim)
{
// TODO: raise if dim > num_primes
// TODO: raise if n > mxn
for (int i = 0; i < dim; i++)
ri.emplace_back(num, primes[i], maxn);
eval();
}
/* This calls RadicalInverse::increase() for all radical inverses and calls
eval(). */
void
HaltonSequence::increase()
{
for (auto &i : ri)
i.increase();
num++;
if (num <= maxn)
eval();
}
/* This sets point pt to radical inverse evaluations in each dimension. */
void
HaltonSequence::eval()
{
for (unsigned int i = 0; i < ri.size(); i++)
pt[i] = ri[i].eval(per);
}
/* Debug print. */
void
HaltonSequence::print() const
{
auto ff = std::cout.flags();
for (const auto &i : ri)
i.print();
std::cout << "point=[ "
<< std::fixed << std::setprecision(6);
for (unsigned int i = 0; i < ri.size(); i++)
std::cout << std::setw(7) << pt[i] << ' ';
std::cout << ']' << std::endl;
std::cout.flags(ff);
}
qmcpit::qmcpit(const QMCSpecification &s, int n)
: spec(s), halton{n, s.level(), s.dimen(), s.getPerScheme()},
sig{s.dimen()}
{
}
bool
qmcpit::operator==(const qmcpit &qpit) const
{
return &spec == &qpit.spec && halton.getNum() == qpit.halton.getNum();
}
qmcpit &
qmcpit::operator++()
{
halton.increase();
return *this;
}
double
qmcpit::weight() const
{
return 1.0/spec.level();
}
int
WarnockPerScheme::permute(int i, int base, int c) const
{
return (c+i) % base;
}
int
ReversePerScheme::permute(int i, int base, int c) const
{
return (base-c) % base;
}