dynare/mex/sources/libkorder/kord/decision_rule.hh

681 lines
24 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2004 Ondra Kamenik
* Copyright © 2019-2023 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
// Decision rule and simulation
/* The main purpose of this file is a decision rule representation which can
run a simulation. So we define an interface for classes providing
realizations of random shocks, and define the class DecisionRule. The latter
basically takes tensor container of derivatives of policy rules, and adds
them up with respect to σ. The class allows to specify the σ different from
1.
In addition, we provide classes for running simulations and storing the
results, calculating some statistics and generating IRF. The class
DRFixPoint allows for calculation of the fix point of a given decision
rule. */
#ifndef DECISION_RULE_H
#define DECISION_RULE_H
#include "kord_exception.hh"
#include "korder.hh"
#include <memory>
#include <random>
#include <string>
/* This class is an abstract interface to decision rule. Its main purpose is to
define a common interface for simulation of a decision rule. We need only a
simulate, evaluate, centralized clone and output method. */
class DecisionRule
{
public:
enum class emethod { horner, trad };
virtual ~DecisionRule() = default;
/* primitive evaluation (it takes a vector of state variables (predetermined,
both and shocks) and returns the next period variables. Both input and
output are in deviations from the rule's steady. */
virtual void eval(emethod em, Vector &out, const ConstVector &v) const = 0;
/* makes only one step of simulation (in terms of absolute values, not
deviations) */
virtual void evaluate(emethod em, Vector &out, const ConstVector &ys,
const ConstVector &u) const = 0;
/* returns a new copy of the decision rule, which is centralized about
provided fix-point */
virtual std::unique_ptr<DecisionRule> centralizedClone(const Vector &fixpoint) const = 0;
virtual const Vector &getSteady() const = 0;
virtual int nexog() const = 0;
virtual const PartitionY &getYPart() const = 0;
};
/* The main purpose of this class is to implement DecisionRule interface, which
is a simulation. To be able to do this we have to know the partitioning of
state vector y since we will need to pick only predetermined part y*. Also,
we need to know the steady state.
The decision rule will take the form:
ₙ ᵢ ⎡y*ₜ₋₁ ȳ*⎤αₘ
yₜ ȳ = ∑ [g_(yu)ⁱ]_α₁…αᵢ ∏ ⎢ ⎥
ⁱ⁼⁰ ᵐ⁼¹ ⎣ uₜ ⎦
where the tensors [g_(yu)ⁱ] are tensors of the constructed container, and ȳ
is the steady state.
If we know the fix point of the rule (conditional zero shocks) ỹ, the rule
can be transformed to so called “centralized” form. This is very similar to
the form above but the zero dimensional tensor is zero:
ₙ ᵢ ⎡y*ₜ₋₁ ỹ*⎤αₘ
yₜ ỹ = ∑ [g_(yu)ⁱ]_α₁…αᵢ ∏ ⎢ ⎥
ⁱ⁼¹ ᵐ⁼¹ ⎣ uₜ ⎦
We provide a method and a constructor to transform a rule to the centralized
form.
The class is templated, the template argument is either Storage::fold or
Storage::unfold. So, there are two implementations of the DecisionRule
interface. */
template<Storage t>
class DecisionRuleImpl : public ctraits<t>::Tpol, public DecisionRule
{
protected:
using _Tpol = typename ctraits<t>::Tpol;
using _Tg = typename ctraits<t>::Tg;
using _TW = typename ctraits<t>::TW;
using _Ttensor = typename ctraits<t>::Ttensor;
using _Ttensym = typename ctraits<t>::Ttensym;
const Vector ysteady;
const PartitionY ypart;
const int nu;
public:
DecisionRuleImpl(const _Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: ctraits<t>::Tpol(pol), ysteady(ys), ypart(yp), nu(nuu)
{
}
DecisionRuleImpl(_Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: ctraits<t>::Tpol(0, yp.ny(), pol), ysteady(ys), ypart(yp),
nu(nuu)
{
}
DecisionRuleImpl(const _Tg &g, const PartitionY &yp, int nuu,
const ConstVector &ys, double sigma)
: ctraits<t>::Tpol(yp.ny(), yp.nys()+nuu), ysteady(ys), ypart(yp), nu(nuu)
{
fillTensors(g, sigma);
}
DecisionRuleImpl(const _TW &W, int nys, int nuu,
const ConstVector &ys)
: ctraits<t>::Tpol(1, nys+nuu), ysteady(ys), nu(nuu)
{
fillTensors(W, nys);
}
DecisionRuleImpl(const DecisionRuleImpl<t> &dr, const ConstVector &fixpoint)
: ctraits<t>::Tpol(dr.ypart.ny(), dr.ypart.nys()+dr.nu),
ysteady(fixpoint), ypart(dr.ypart), nu(dr.nu)
{
centralize(dr);
}
const Vector &
getSteady() const override
{
return ysteady;
}
void evaluate(emethod em, Vector &out, const ConstVector &ys,
const ConstVector &u) const override;
std::unique_ptr<DecisionRule> centralizedClone(const Vector &fixpoint) const override;
int
nexog() const override
{
return nu;
}
const PartitionY &
getYPart() const override
{
return ypart;
}
protected:
void fillTensors(const _Tg &g, double sigma);
void fillTensors(const _TW &W, int nys);
void centralize(const DecisionRuleImpl &dr);
public:
void eval(emethod em, Vector &out, const ConstVector &v) const override;
};
/* Here we have to fill the tensor polynomial. This involves two separated
actions. The first is to evaluate the approximation at a given σ, the second
is to compile the tensors [g_(yu)ⁱ⁺ʲ] from [g_yⁱuʲ]. The first action is
done here, the second is done by method addSubTensor() of a full symmetry
tensor.
The way how the evaluation is done is described here:
The q-order approximation to the solution can be written as:
⎡ ⎤
q 1 ⎢ ⎛ l ⎞⎡ ⎤ ᵢ ⎡ ⎤αₘ ⱼ ⎡ ⎤βₘ ⎥
yₜ ȳ = ∑ ──⎢ ∑ ⎢ ⎥⎢g_yⁱuʲσᵏ⎥ ∏ ⎢y*ₜ₋₁ ȳ*⎥ ∏ ⎢uₜ⎥ σᵏ⎥
ˡ⁼¹ l!⎢ⁱ⁺ʲ⁺ᵏ⁼ˡ⎝i,j,k⎠⎣ ⎦α₁…αⱼβ₁…βⱼ ᵐ⁼¹⎣ ⎦ ᵐ⁼¹⎣ ⎦ ⎥
⎣ ⎦
⎡ ⎡ ⎤ ⎤
q ⎢ ⎛i+j⎞⎢ₗ₋ᵢ₋ⱼ 1 ⎛l⎞ ⎡ ⎤ ⎥ ᵢ ⎡ ⎤αₘ ⱼ ⎡ ⎤βₘ⎥
= ∑ ⎢ ∑ ⎢ ⎥⎢ ∑ ── ⎢ ⎥ ⎢g_yⁱuʲσᵏ⎥ σᵏ⎥ ∏ ⎢y*ₜ₋₁ ȳ*⎥ ∏ ⎢uₜ⎥ ⎥
ˡ⁼¹⎢i+j≤l ⎝ i ⎠⎢ ᵏ⁼⁰ l! ⎝k⎠ ⎣ ⎦α₁…αⱼβ₁…βⱼ ⎥ ᵐ⁼¹⎣ ⎦ ᵐ⁼¹⎣ ⎦ ⎥
⎣ ⎣ ⎦ ⎦
This means that for each i+j+k=l we have to add
1 ⎛l⎞ 1
── ⎢ ⎥ [g_yⁱuʲσᵏ]·σᵏ = ──────── [g_yⁱuʲσᵏ]·σᵏ
l! ⎝k⎠ (i+j)!k!
to [g_(yu)ⁱ⁺ʲ].
⎛i+j⎞
In addition, note that the multiplier ⎝ k ⎠ is applied when the fully symmetric
tensor [g_(yu)ⁱ⁺ʲ] is evaluated.
So we go through i+j=d=0…q and in each loop we form the fully symmetric
tensor [g_(yu)ᵈ] and insert it to the container. */
template<Storage t>
void
DecisionRuleImpl<t>::fillTensors(const _Tg &g, double sigma)
{
IntSequence tns{ypart.nys(), nu};
int dfact = 1;
for (int d = 0; d <= g.getMaxDim(); d++, dfact *= d)
{
auto g_yud = std::make_unique<_Ttensym>(ypart.ny(), ypart.nys()+nu, d);
g_yud->zeros();
// fill tensor of g_yud of dimension d
/* Here we have to fill the tensor [g_(yu)ᵈ]. So we go through all pairs
(i,j) such that i+j=d, and through all k from zero up to maximal
dimension minus d. In this way we go through all symmetries of
[g_yⁱuʲσᵏ] which will be added to [g_(yu)ᵈ].
Note that at the beginning, dfact is a factorial of d. We
calculate kfact is equal to k!. As indicated in
DecisionRuleImpl::fillTensors(), the added tensor is thus multiplied
with 1/(d!k!)·σᵏ. */
for (int i = 0; i <= d; i++)
{
int j = d-i;
int kfact = 1;
_Ttensor tmp(ypart.ny(),
TensorDimens(Symmetry{i, j}, tns));
tmp.zeros();
for (int k = 0; k+d <= g.getMaxDim(); k++, kfact *= k)
{
Symmetry sym{i, j, 0, k};
if (g.check(sym))
{
double mult = pow(sigma, k)/dfact/kfact;
tmp.add(mult, g.get(sym));
}
}
g_yud->addSubTensor(tmp);
}
this->insert(std::move(g_yud));
}
}
template<Storage t>
void
DecisionRuleImpl<t>::fillTensors(const _TW &W, int nys)
{
IntSequence tns{nys, nu};
int dfact = 1;
for (int d = 0; d <= W.getMaxDim(); d++, dfact *= d)
{
auto W_yud = std::make_unique<_Ttensym>(1, nys+nu, d);
W_yud->zeros();
// fill tensor of g_yud of dimension d
/* Here we have to fill the tensor [g_(yu)ᵈ]. So we go through all pairs
(i,j) such that i+j=d, and through all k from zero up to maximal
dimension minus d. In this way we go through all symmetries of
[g_yⁱuʲσᵏ] which will be added to [g_(yu)ᵈ].
Note that at the beginning, dfact is a factorial of d. We
calculate kfact is equal to k!. As indicated in
DecisionRuleImpl::fillTensors(), the added tensor is thus multiplied
with 1/(d!k!)·σᵏ. */
for (int i = 0; i <= d; i++)
{
int j = d-i;
int kfact = 1;
_Ttensor tmp(1, TensorDimens(Symmetry{i, j}, tns));
tmp.zeros();
for (int k = 0; k+d <= W.getMaxDim(); k++, kfact *= k)
{
Symmetry sym{i, j, 0, k};
if (W.check(sym))
{
double mult = 1.0/dfact/kfact;
tmp.add(mult, W.get(sym));
}
}
W_yud->addSubTensor(tmp);
}
this->insert(std::move(W_yud));
}
}
/* The centralization is straightforward. We suppose here that the objects
steady state is the fix point ỹ. It is clear that the new derivatives
[g~_(yu)ⁱ] will be equal to the derivatives of the original decision rule
dr at the new steady state ỹ. So, the new derivatives are obtained by
derivating the given decision rule dr and evaluating its polynomial at:
⎡ỹ* ȳ*⎤
dstate = ⎢ ⎥,
⎣ 0 ⎦
where ȳ is the steady state of the original rule dr. */
template<Storage t>
void
DecisionRuleImpl<t>::centralize(const DecisionRuleImpl &dr)
{
Vector dstate(ypart.nys() + nu);
dstate.zeros();
Vector dstate_star(dstate, 0, ypart.nys());
ConstVector newsteady_star(ysteady, ypart.nstat, ypart.nys());
ConstVector oldsteady_star(dr.ysteady, ypart.nstat, ypart.nys());
dstate_star.add(1.0, newsteady_star);
dstate_star.add(-1.0, oldsteady_star);
_Tpol pol(dr);
int dfac = 1;
for (int d = 1; d <= dr.getMaxDim(); d++, dfac *= d)
{
pol.derivative(d-1);
auto der = pol.evalPartially(d, dstate);
der->mult(1.0/dfac);
this->insert(std::move(der));
}
}
/* This is one period evaluation of the decision rule. The simulation is a
sequence of repeated one period evaluations with a difference, that the
steady state (fix point) is cancelled and added once. Hence we have two
special methods. */
template<Storage t>
void
DecisionRuleImpl<t>::evaluate(emethod em, Vector &out, const ConstVector &ys,
const ConstVector &u) const
{
KORD_RAISE_IF(ys.length() != ypart.nys() || u.length() != nu,
"Wrong dimensions of input vectors in DecisionRuleImpl::evaluate");
KORD_RAISE_IF(out.length() != ypart.ny(),
"Wrong dimension of output vector in DecisionRuleImpl::evaluate");
ConstVector ysteady_pred(ysteady, ypart.nstat, ypart.nys());
Vector ys_u(ypart.nys()+nu);
Vector ys_u1(ys_u, 0, ypart.nys());
ys_u1 = ys;
ys_u1.add(-1.0, ysteady_pred);
Vector ys_u2(ys_u, ypart.nys(), nu);
ys_u2 = u;
eval(em, out, ys_u);
out.add(1.0, ysteady);
}
/* This is easy. We just return the newly created copy using the centralized
constructor. */
template<Storage t>
std::unique_ptr<DecisionRule>
DecisionRuleImpl<t>::centralizedClone(const Vector &fixpoint) const
{
return std::make_unique<DecisionRuleImpl<t>>(*this, fixpoint);
}
/* Here we only encapsulate two implementations to one, deciding according to
the parameter. */
template<Storage t>
void
DecisionRuleImpl<t>::eval(emethod em, Vector &out, const ConstVector &v) const
{
if (em == emethod::horner)
_Tpol::evalHorner(out, v);
else
_Tpol::evalTrad(out, v);
}
/* This is exactly the same as DecisionRuleImpl<Storage::fold>. The only
difference is that we have a conversion from UnfoldDecisionRule, which is
exactly DecisionRuleImpl<Storage::unfold>. */
class UnfoldDecisionRule;
class FoldDecisionRule : public DecisionRuleImpl<Storage::fold>
{
friend class UnfoldDecisionRule;
public:
FoldDecisionRule(const ctraits<Storage::fold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::fold>(pol, yp, nuu, ys)
{
}
FoldDecisionRule(ctraits<Storage::fold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::fold>(pol, yp, nuu, ys)
{
}
FoldDecisionRule(const ctraits<Storage::fold>::Tg &g, const PartitionY &yp, int nuu,
const ConstVector &ys, double sigma)
: DecisionRuleImpl<Storage::fold>(g, yp, nuu, ys, sigma)
{
}
FoldDecisionRule(const ctraits<Storage::fold>::TW &W, int nys, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::fold>(W, nys, nuu, ys)
{
}
FoldDecisionRule(const DecisionRuleImpl<Storage::fold> &dr, const ConstVector &fixpoint)
: DecisionRuleImpl<Storage::fold>(dr, fixpoint)
{
}
FoldDecisionRule(const UnfoldDecisionRule &udr);
};
/* This is exactly the same as DecisionRuleImpl<Storage::unfold>, but with a
conversion from FoldDecisionRule, which is exactly
DecisionRuleImpl<Storage::fold>. */
class UnfoldDecisionRule : public DecisionRuleImpl<Storage::unfold>
{
friend class FoldDecisionRule;
public:
UnfoldDecisionRule(const ctraits<Storage::unfold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::unfold>(pol, yp, nuu, ys)
{
}
UnfoldDecisionRule(ctraits<Storage::unfold>::Tpol &pol, const PartitionY &yp, int nuu,
const ConstVector &ys)
: DecisionRuleImpl<Storage::unfold>(pol, yp, nuu, ys)
{
}
UnfoldDecisionRule(const ctraits<Storage::unfold>::Tg &g, const PartitionY &yp, int nuu,
const ConstVector &ys, double sigma)
: DecisionRuleImpl<Storage::unfold>(g, yp, nuu, ys, sigma)
{
}
UnfoldDecisionRule(const DecisionRuleImpl<Storage::unfold> &dr, const ConstVector &fixpoint)
: DecisionRuleImpl<Storage::unfold>(dr, fixpoint)
{
}
UnfoldDecisionRule(const FoldDecisionRule &udr);
};
/* This class serves for calculation of the fix point of the decision rule
given that the shocks are zero. The class is very similar to the
DecisionRuleImpl. Besides the calculation of the fix point, the only
difference between DRFixPoint and DecisionRuleImpl is that the derivatives
wrt. shocks are ignored (since shocks are zero during the calculations).
That is why have a different fillTensor() method.
The solution algorithm is Newton and is described in
DRFixPoint::solveNewton(). It solves F(y)=0, where F=g(y,0)y. The function
F is given by its derivatives bigf. The Jacobian of the solved system is
given by derivatives stored in bigfder. */
template<Storage t>
class DRFixPoint : public ctraits<t>::Tpol
{
using _Tpol = typename ctraits<t>::Tpol;
using _Tg = typename ctraits<t>::Tg;
using _Ttensor = typename ctraits<t>::Ttensor;
using _Ttensym = typename ctraits<t>::Ttensym;
constexpr static int max_iter = 10000;
constexpr static int max_newton_iter = 50;
constexpr static int newton_pause = 100;
constexpr static double tol = 1e-10;
const Vector ysteady;
const PartitionY ypart;
std::unique_ptr<_Tpol> bigf;
std::unique_ptr<_Tpol> bigfder;
public:
using emethod = typename DecisionRule::emethod;
DRFixPoint(const _Tg &g, const PartitionY &yp,
const Vector &ys, double sigma);
bool calcFixPoint(emethod em, Vector &out);
int
getNumIter() const
{
return iter;
}
int
getNewtonLastIter() const
{
return newton_iter_last;
}
int
getNewtonTotalIter() const
{
return newton_iter_total;
}
protected:
void fillTensors(const _Tg &g, double sigma);
bool solveNewton(Vector &y);
private:
int iter;
int newton_iter_last;
int newton_iter_total;
};
/* Here we have to setup the function F=g(y,0)y and ∂F/∂y. The former is taken
from the given derivatives of g where a unit matrix is subtracted from the
first derivative (Symmetry{1}). Then the derivative of the F polynomial is
calculated. */
template<Storage t>
DRFixPoint<t>::DRFixPoint(const _Tg &g, const PartitionY &yp,
const Vector &ys, double sigma)
: ctraits<t>::Tpol(yp.ny(), yp.nys()),
ysteady(ys), ypart(yp)
{
fillTensors(g, sigma);
_Tpol yspol(ypart.nstat, ypart.nys(), *this);
bigf = std::make_unique<_Tpol>(const_cast<const _Tpol &>(yspol));
_Ttensym &frst = bigf->get(Symmetry{1});
for (int i = 0; i < ypart.nys(); i++)
frst.get(i, i) = frst.get(i, i) - 1;
bigfder = std::make_unique<_Tpol>(*bigf, 0);
}
/* Here we fill the tensors for the DRFixPoint class. We ignore the derivatives
[g_yⁱuʲσᵏ] for which j>0. So we go through all dimensions d, and all k
such that d+k is between the maximum dimension and d, and add
σᵏ/(d!k!)[g_yᵈσᵏ] to the tensor [g_yᵈ]. */
template<Storage t>
void
DRFixPoint<t>::fillTensors(const _Tg &g, double sigma)
{
int dfact = 1;
for (int d = 0; d <= g.getMaxDim(); d++, dfact *= d)
{
auto g_yd = std::make_unique<_Ttensym>(ypart.ny(), ypart.nys(), d);
g_yd->zeros();
int kfact = 1;
for (int k = 0; d+k <= g.getMaxDim(); k++, kfact *= k)
{
if (g.check(Symmetry{d, 0, 0, k}))
{
const _Ttensor &ten = g.get(Symmetry{d, 0, 0, k});
double mult = pow(sigma, k)/dfact/kfact;
g_yd->add(mult, ten);
}
}
this->insert(std::move(g_yd));
}
}
/* This tries to solve polynomial equation F(y)=0, where F polynomial is bigf
and its derivative is in bigfder. It returns true if the Newton converged.
The method takes the given vector as initial guess, and rewrites it with a
solution. The method guarantees to return the vector, which has smaller norm
of the residual. That is why the input/output vector y is always changed.
The method proceeds with a Newton step, if the Newton step improves the
residual error. So we track residual errors in flastnorm and fnorm
(former and current). In addition, at each step we search for an
underrelaxation parameter urelax, which improves the residual. If urelax
is less that urelax_threshold, we stop searching and stop the Newton. */
template<Storage t>
bool
DRFixPoint<t>::solveNewton(Vector &y)
{
const double urelax_threshold = 1.e-5;
Vector sol(const_cast<const Vector &>(y));
Vector delta(y.length());
newton_iter_last = 0;
bool delta_finite = true;
double flastnorm = 0.0;
double fnorm = 0.0;
bool converged = false;
double urelax = 1.0;
do
{
auto jacob = bigfder->evalPartially(1, sol);
bigf->evalHorner(delta, sol);
if (newton_iter_last == 0)
flastnorm = delta.getNorm();
delta_finite = delta.isFinite();
if (delta_finite)
{
ConstTwoDMatrix(*jacob).multInvLeft(delta);
// find urelax improving residual
/* Here we find the urelax. We cycle as long as the new residual
size fnorm is greater than last residual size flastnorm. If
the urelax is less than urelax_threshold we give up. The
urelax is damped by the ratio of flastnorm and fnorm. It the
ratio is close to one, we damp by one half. */
bool urelax_found = false;
urelax = 1.0;
while (!urelax_found && urelax > urelax_threshold)
{
Vector soltmp(const_cast<const Vector &>(sol));
soltmp.add(-urelax, delta);
Vector f(sol.length());
bigf->evalHorner(f, soltmp);
fnorm = f.getNorm();
if (fnorm <= flastnorm)
urelax_found = true;
else
urelax *= std::min(0.5, flastnorm/fnorm);
}
sol.add(-urelax, delta);
delta_finite = delta.isFinite();
}
newton_iter_last++;
converged = delta_finite && fnorm < tol;
flastnorm = fnorm;
}
while (!converged && newton_iter_last < max_newton_iter
&& urelax > urelax_threshold);
newton_iter_total += newton_iter_last;
if (!converged)
newton_iter_last = 0;
y = const_cast<const Vector &>(sol);
return converged;
}
/* This method solves the fix point of the no-shocks rule yₜ₊₁=f(yₜ). It
combines dull steps with Newton attempts. The dull steps correspond to
evaluations setting yₜ₊₁=f(yₜ). For reasonable models the dull steps
converge to the fix-point but very slowly. That is why we make Newton
attempt from time to time. The frequency of the Newton attempts is given by
newton_pause. We perform the calculations in deviations from the steady
state. So, at the end, we have to add the steady state.
The method also sets the members iter, newton_iter_last and
newton_iter_total. These numbers can be examined later.
The out vector is not touched if the algorithm has not convered. */
template<Storage t>
bool
DRFixPoint<t>::calcFixPoint(emethod em, Vector &out)
{
KORD_RAISE_IF(out.length() != ypart.ny(),
"Wrong length of out in DRFixPoint::calcFixPoint");
Vector delta(ypart.nys());
Vector ystar(ypart.nys());
ystar.zeros();
iter = 0;
newton_iter_last = 0;
newton_iter_total = 0;
bool converged = false;
do
{
if ((iter/newton_pause)*newton_pause == iter)
converged = solveNewton(ystar);
if (!converged)
{
bigf->evalHorner(delta, ystar);
KORD_RAISE_IF_X(!delta.isFinite(),
"NaN or Inf asserted in DRFixPoint::calcFixPoint",
KORD_FP_NOT_FINITE);
ystar.add(1.0, delta);
converged = delta.getNorm() < tol;
}
iter++;
}
while (iter < max_iter && !converged);
if (converged)
{
_Tpol::evalHorner(out, ystar);
out.add(1.0, ysteady);
}
return converged;
}
#endif