dynare/matlab/hessian.m

51 lines
1.4 KiB
Matlab

% Copyright (C) 2001 Michel Juillard
%% computes second order partial derivatives
% uses Abramowitz and Stegun (1965) formulas 25.3.24 and 25.3.27 p. 884
function hessian_mat = hessian(func,x,varargin)
global options_
func = str2func(func);
n=size(x,1);
%h1=max(abs(x),options_.gstep*ones(n,1))*eps^(1/3);
h1=max(abs(x),sqrt(options_.gstep)*ones(n,1))*eps^(1/6);
h_1=h1;
xh1=x+h1;
h1=xh1-x;
xh1=x-h_1;
h_1=x-xh1;
xh1=x;
f0=feval(func,x,varargin{:});
f1=zeros(size(f0,1),n);
f_1=f1;
for i=1:n
xh1(i)=x(i)+h1(i);
f1(:,i)=feval(func,xh1,varargin{:});
xh1(i)=x(i)-h_1(i);
f_1(:,i)=feval(func,xh1,varargin{:});
xh1(i)=x(i);
i=i+1;
end
xh_1=xh1;
hessian_mat = zeros(size(f0,1),n*n);
for i=1:n
if i > 1
k=[i:n:n*(i-1)];
hessian_mat(:,(i-1)*n+1:(i-1)*n+i-1)=hessian_mat(:,k);
end
hessian_mat(:,(i-1)*n+i)=(f1(:,i)+f_1(:,i)-2*f0)./(h1(i)*h_1(i));
temp=f1+f_1-f0*ones(1,n);
for j=i+1:n
xh1(i)=x(i)+h1(i);
xh1(j)=x(j)+h_1(j);
xh_1(i)=x(i)-h1(i);
xh_1(j)=x(j)-h_1(j);
hessian_mat(:,(i-1)*n+j)=-(-feval(func,xh1,varargin{:})-feval(func,xh_1,varargin{:})+temp(:,i)+temp(:,j))./(2*h1(i)*h_1(j));
xh1(i)=x(i);
xh1(j)=x(j);
xh_1(i)=x(i);
xh_1(j)=x(j);
j=j+1;
end
i=i+1;
end
% 11/25/03 SA Created from Hessian_sparse (removed sparse)