dynare/matlab/DiffuseLikelihoodH1.m

159 lines
5.0 KiB
Matlab

function LIK = DiffuseLikelihoodH1(T,R,Q,H,Pinf,Pstar,Y,trend,start)
% stephane.adjemian@cepremap.cnrs.fr [07-19-2004]
%
% See "Filtering and Smoothing of State Vector for Diffuse State Space
% Models", S.J. Koopman and J. Durbin (2003, in Journal of Time Series
% Analysis, vol. 24(1), pp. 85-98).
%
% THE PROBLEM:
%
% y_t = Z_t * \alpha_t + \varepsilon_t
% \alpha_{t+1} = T_t * \alpha_t + R_t * \eta_t
%
% with:
%
% \alpha_1 = a + A*\delta + R_0*\eta_0
%
% m*q matrix A and m*(m-q) matrix R_0 are selection matrices (their
% columns constitue all the columns of the m*m identity matrix) so that
%
% A'*R_0 = 0 and A'*\alpha_1 = \delta
%
% We assume that the vector \delta is distributed as a N(0,\kappa*I_q)
% for a given \kappa > 0. So that the expectation of \alpha_1 is a and
% its variance is P, with
%
% P = \kappa*P_{\infty} + P_{\star}
%
% P_{\infty} = A*A'
% P_{\star} = R_0*Q_0*R_0'
%
% P_{\infty} is a m*m diagonal matrix with q ones and m-q zeros.
%
%
% and where:
%
% y_t is a pp*1 vector
% \alpha_t is a mm*1 vector
% \varepsilon_t is a pp*1 multivariate random variable (iid N(0,H_t))
% \eta_t is a rr*1 multivariate random variable (iid N(0,Q_t))
% a_1 is a mm*1 vector
%
% Z_t is a pp*mm matrix
% T_t is a mm*mm matrix
% H_t is a pp*pp matrix
% R_t is a mm*rr matrix
% Q_t is a rr*rr matrix
% P_1 is a mm*mm matrix
%
%
% FILTERING EQUATIONS:
%
% v_t = y_t - Z_t* a_t
% F_t = Z_t * P_t * Z_t' + H_t
% K_t = T_t * P_t * Z_t' * F_t^{-1}
% L_t = T_t - K_t * Z_t
% a_{t+1} = T_t * a_t + K_t * v_t
% P_{t+1} = T_t * P_t * L_t' + R_t*Q_t*R_t'
%
%
% DIFFUSE FILTERING EQUATIONS:
%
% a_{t+1} = T_t*a_t + K_{\infty,t}v_t
% P_{\infty,t+1} = T_t*P_{\infty,t}*L_{\infty,t}'
% P_{\ast,t+1} = T_t*P_{\ast,t}*L_{\infty,t}' - K_{\infty,t}*F_{\infty,t}*K_{\ast,t}' + R_t*Q_t*R_t'
% K_{\infty,t} = T_t*P_{\infty,t}*Z_t'*F_{\infty,t}^{-1}
% v_t = y_t - Z_t*a_t
% L_{\infty,t} = T_t - K_{\infty,t}*Z_t
% F_{\infty,t} = Z_t*P_{\infty,t}*Z_t'
% K_{\ast,t} = (T_t*P_{\ast,t}*Z_t' + K_{\infty,t}*F_{\ast,t})*F_{\infty,t}^{-1}
% F_{\ast,t} = Z_t*P_{\ast,t}*Z_t' + H_t
%
% Matrix Finf is assumed to be non singular. If this is not the case we have
% to switch to another algorithm (NewAlg=3).
%
% start = options_.presample
global bayestopt_ options_
mf = bayestopt_.mf;
smpl = size(Y,2);
mm = size(T,2);
pp = size(Y,1);
a = zeros(mm,1);
dF = 1;
QQ = R*Q*transpose(R);
t = 0;
lik = zeros(smpl+1,1);
LIK = Inf;
lik(smpl+1) = smpl*pp*log(2*pi);
notsteady = 1;
crit = options_.kalman_tol;
reste = 0;
while rank(Pinf,crit) & t < smpl
t = t+1;
v = Y(:,t)-a(mf)-trend(:,t);
Finf = Pinf(mf,mf);
if rcond(Finf) < crit
if ~all(abs(Finf(:))<crit)
return
else
iFstar = inv(Pstar(mf,mf)+H);
dFstar = det(Pstar(mf,mf)+H);
Kstar = Pstar(:,mf)*iFstar;
lik(t) = log(dFstar) + transpose(v)*iFstar*v;
Pinf = T*Pinf*transpose(T);
Pstar = T*(Pstar-Pstar(:,mf)*transpose(Kstar))*transpose(T)+QQ;
a = T*(a+Kstar*v);
end
else
lik(t) = log(det(Finf));
iFinf = inv(Finf);
Kinf = Pinf(:,mf)*iFinf; %% premultiplication by the transition matrix T is removed (stephane)
Fstar = Pstar(mf,mf)+H;
Kstar = (Pstar(:,mf)-Kinf*Fstar)*iFinf; %% premultiplication by the transition matrix T is removed (stephane)
Pstar = T*(Pstar-Pstar(:,mf)*transpose(Kinf)-Pinf(:,mf)*transpose(Kstar))*transpose(T)+QQ;
Pinf = T*(Pinf-Pinf(:,mf)*transpose(Kinf))*transpose(T);
a = T*(a+Kinf*v);
end
end
if t == smpl
error(['There isn''t enough information to estimate the initial' ...
' conditions of the nonstationary variables']);
end
F_singular = 1;
while notsteady & t < smpl
t = t+1;
v = Y(:,t)-a(mf)-trend(:,t);
F = Pstar(mf,mf)+H;
oldPstar = Pstar;
dF = det(F);
if rcond(F) < crit
if ~all(abs(F(:))<crit)
return
else
a = T*a;
Pstar = T*Pstar*transpose(T)+QQ;
end
else
F_singular = 0;
iF = inv(F);
lik(t) = log(dF)+transpose(v)*iF*v;
K = Pstar(:,mf)*iF; %% premultiplication by the transition matrix T is removed (stephane)
a = T*(a+K*v); %% --> factorization of the transition matrix...
Pstar = T*(Pstar-Pstar(:,mf)*iF*Pstar(mf,:))*transpose(T)+QQ; %% ... idem (stephane)
end
notsteady = ~(max(max(abs(Pstar-oldPstar)))<crit);
end
if F_singular == 1
error(['The variance of the forecast error remains singular until the' ...
'end of the sample'])
end
reste = smpl-t;
while t < smpl
t = t+1;
v = Y(:,t)-a(mf)-trend(:,t);
a = T*(a+K*v);
lik(t) = transpose(v)*iF*v;
end
lik(t) = lik(t) + reste*log(dF);
LIK = .5*(sum(lik(start:end))-(start-1)*lik(smpl+1)/smpl);% Minus the log-likelihood.