dynare/mex/sources/libkorder/tl/sparse_tensor.hh

186 lines
4.8 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2004 Ondra Kamenik
* Copyright © 2019-2023 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
// Sparse tensor.
/* Here we declare a sparse full and general symmetry tensors with the
multidimensional index along columns. We implement them as a std::multimap
associating to each sequence of coordinates IntSequence a set of pairs (row,
number). This is very convenient but not optimal in terms of memory
consumption. So the implementation can be changed.
The current std::multimap implementation allows insertions. Another
advantage of this approach is that we do not need to calculate column
numbers from the IntSequence, since the column is accessed directly via the
key which is IntSequence.
The only operation we need to do with the full symmetry sparse tensor
is a left multiplication of a row oriented single column tensor. The
result of such an operation is a column of the same size as the sparse
tensor. Other important operations are slicing operations. We need to
do sparse and dense slices of full symmetry sparse tensors. In fact,
the only constructor of general symmetry sparse tensor is slicing from
the full symmetry sparse. */
#ifndef SPARSE_TENSOR_H
#define SPARSE_TENSOR_H
#include "Vector.hh"
#include "gs_tensor.hh"
#include "symmetry.hh"
#include "tensor.hh"
#include <map>
struct ltseq
{
bool
operator()(const IntSequence& s1, const IntSequence& s2) const
{
return s1 < s2;
}
};
/* This is a super class of both full symmetry and general symmetry sparse
tensors. It contains a std::multimap and implements insertions. It tracks
maximum and minimum row, for which there is an item. */
class SparseTensor
{
public:
using Map = std::multimap<IntSequence, std::pair<int, double>, ltseq>;
protected:
Map m;
int dim;
int nr;
int nc;
int first_nz_row;
int last_nz_row {-1};
public:
SparseTensor(int d, int nnr, int nnc) : dim(d), nr(nnr), nc(nnc), first_nz_row(nr)
{
}
virtual ~SparseTensor() = default;
void insert(IntSequence s, int r, double c);
[[nodiscard]] const Map&
getMap() const
{
return m;
}
[[nodiscard]] int
dimen() const
{
return dim;
}
[[nodiscard]] int
nrows() const
{
return nr;
}
[[nodiscard]] int
ncols() const
{
return nc;
}
[[nodiscard]] double
getFillFactor() const
{
return static_cast<double>(m.size()) / nrows() / ncols();
}
[[nodiscard]] double getFoldIndexFillFactor() const;
[[nodiscard]] double getUnfoldIndexFillFactor() const;
[[nodiscard]] int
getNumNonZero() const
{
return m.size();
}
[[nodiscard]] int
getFirstNonZeroRow() const
{
return first_nz_row;
}
[[nodiscard]] int
getLastNonZeroRow() const
{
return last_nz_row;
}
[[nodiscard]] virtual const Symmetry& getSym() const = 0;
void print() const;
[[nodiscard]] bool isFinite() const;
};
/* This is a full symmetry sparse tensor. It implements multColumnAndAdd() and,
in addition to SparseTensor, it has nv (number of variables) and symmetry
(basically it is a dimension). */
class FSSparseTensor : public SparseTensor
{
private:
int nv;
Symmetry sym;
public:
FSSparseTensor(int d, int nvar, int r);
void insert(IntSequence s, int r, double c);
void multColumnAndAdd(const Tensor& t, Vector& v) const;
[[nodiscard]] const Symmetry&
getSym() const override
{
return sym;
}
[[nodiscard]] int
nvar() const
{
return nv;
}
void print() const;
};
/* This is a general symmetry sparse tensor. It has TensorDimens and can be
constructed as a slice of the full symmetry sparse tensor. The slicing
constructor takes the same form as the slicing FGSTensor constructor from
full symmetry sparse tensor. */
class GSSparseTensor : public SparseTensor
{
private:
TensorDimens tdims;
public:
GSSparseTensor(const FSSparseTensor& t, const IntSequence& ss, const IntSequence& coor,
TensorDimens td);
void insert(IntSequence s, int r, double c);
[[nodiscard]] const Symmetry&
getSym() const override
{
return tdims.getSym();
}
[[nodiscard]] const TensorDimens&
getDims() const
{
return tdims;
}
void print() const;
};
#endif