dynare/nonlinear-filters/src/auxiliary_particle_filter.m

155 lines
6.3 KiB
Matlab

function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,ParticleOptions,ThreadsOptions)
% Evaluates the likelihood of a nonlinear model with the auxiliary particle filter
% allowing eventually resampling.
%
% Copyright (C) 2011-2015 Dynare Team
%
% This file is part of Dynare (particles module).
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare particles module is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent init_flag mf0 mf1 number_of_particles
persistent sample_size number_of_observed_variables number_of_structural_innovations
% Set default
if isempty(start)
start = 1;
end
% Set flag for prunning
pruning = ParticleOptions.pruning;
% Get steady state and mean.
steadystate = ReducedForm.steadystate;
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
% Set persistent variables.
if isempty(init_flag)
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
sample_size = size(Y,2);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
number_of_particles = ParticleOptions.number_of_particles;
init_flag = 1;
end
% Set local state space model (first order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
% Get covariance matrices
Q = ReducedForm.Q;
H = ReducedForm.H;
% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
Q_lower_triangular_cholesky = chol(Q)';
% Set seed for randn().
set_dynare_seed('default');
% Initialization of the likelihood.
const_lik = log(2*pi)*number_of_observed_variables+log(det(H));
lik = NaN(sample_size,1);
LIK = NaN;
% Initialization of the weights across particles.
weights = ones(1,number_of_particles)/number_of_particles ;
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
%StateVectors = bsxfun(@plus,zeros(state_variance_rank,number_of_particles),StateVectorMean);
if pruning
StateVectors_ = StateVectors;
end
% Uncomment for building the mean average predictions based on a sparse
% grids of structural shocks. Otherwise, all shocks are set to 0 in the
% prediction.
%if ParticleOptions.proposal_approximation.cubature
% [nodes,nodes_weights] = spherical_radial_sigma_points(number_of_structural_innovations) ;
% nodes_weights = ones(size(nodes,1),1)*nodes_weights ;
%elseif ParticleOptions.proposal_approximation.unscented
% [nodes,nodes_weights,nodes_weights_c] = unscented_sigma_points(number_of_structural_innovations,ParticleOptions);
%else
% error('Estimation: This approximation for the proposal is not implemented or unknown!')
%end
%nodes = Q_lower_triangular_cholesky*nodes ;
nodes = zeros(1,number_of_structural_innovations) ;
nodes_weights = 1 ;
for t=1:sample_size
yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
if pruning
yhat_ = bsxfun(@minus,StateVectors_,state_variables_steady_state);
tmp = 0 ;
tmp_ = 0 ;
for i=1:size(nodes)
[tmp1, tmp1_] = local_state_space_iteration_2(yhat,nodes(i,:)*ones(1,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2);
tmp = tmp + nodes_weights(i)*tmp1 ;
tmp_ = tmp_ + nodes_weights(i)*tmp1_ ;
end
else
tmp = 0 ;
for i=1:size(nodes)
tmp = tmp + nodes_weights(i)*local_state_space_iteration_2(yhat,nodes(i,:)*ones(1,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2);
end
end
PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
%tau_tilde = weights.*(exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))) + 1e-99) ;
% Replace Gaussian density with a Student density with 3 degrees of
% freedom for fat tails.
z = sum(PredictionError.*(H\PredictionError),1) ;
tau_tilde = weights.*(tpdf(z,3*ones(size(z)))+1e-99) ;
tau_tilde = tau_tilde/sum(tau_tilde) ;
indx = resample(0,tau_tilde',ParticleOptions);
if pruning
yhat_ = yhat_(:,indx) ;
end
yhat = yhat(:,indx) ;
weights_stage_1 = weights(indx)./tau_tilde(indx) ;
epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles);
if pruning
[tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2);
StateVectors_ = tmp_(mf0,:);
else
tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2);
end
StateVectors = tmp(mf0,:);
PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
weights_stage_2 = weights_stage_1.*(exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))) + 1e-99) ;
lik(t) = log(mean(weights_stage_2)) ;
weights = weights_stage_2/sum(weights_stage_2);
if (ParticleOptions.resampling.status.generic && neff(weights)<ParticleOptions.resampling.threshold*sample_size) || ParticleOptions.resampling.status.systematic
if pruning
temp = resample([StateVectors' StateVectors_'],weights',ParticleOptions);
StateVectors = temp(:,1:number_of_state_variables)';
StateVectors_ = temp(:,number_of_state_variables+1:2*number_of_state_variables)';
else
StateVectors = resample(StateVectors',weights',ParticleOptions)';
end
weights = ones(1,number_of_particles)/number_of_particles;
end
end
%plot(lik) ;
LIK = -sum(lik(start:end));