dynare/mex/sources/kronecker/A_times_B_kronecker_C.cc

186 lines
5.1 KiB
C++

/*
* Copyright (C) 2007-2009 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* This mex file computes A*kron(B,C) or A*kron(B,B) without explicitely building kron(B,C) or kron(B,B), so that
* one can consider large matrices B and/or C.
*/
#include <string.h>
#include <dynmex.h>
#include <dynblas.h>
#ifdef USE_OMP
# include <omp.h>
#endif
void
full_A_times_kronecker_B_C(double *A, double *B, double *C, double *D,
blas_int mA, blas_int nA, blas_int mB, blas_int nB, blas_int mC, blas_int nC)
{
#if USE_OMP
# pragma omp parallel for num_threads(atoi(getenv("DYNARE_NUM_THREADS")))
for (long int colD = 0; colD < nB*nC; colD++)
{
# if DEBUG_OMP
mexPrintf("%d thread number is %d (%d).\n", colD, omp_get_thread_num(), omp_get_num_threads());
# endif
unsigned int colB = colD/nC;
unsigned int colC = colD%nC;
for (int colA = 0; colA < nA; colA++)
{
unsigned int rowB = colA/mC;
unsigned int rowC = colA%mC;
unsigned int idxA = colA*mA;
unsigned int idxD = colD*mA;
double BC = B[colB*mB+rowB]*C[colC*mC+rowC];
for (int rowD = 0; rowD < mA; rowD++)
{
D[idxD+rowD] += A[idxA+rowD]*BC;
}
}
}
#else
const unsigned long shiftA = mA*mC;
const unsigned long shiftD = mA*nC;
unsigned long int kd = 0, ka = 0;
char transpose[2] = "N";
double one = 1.0;
for (unsigned long int col = 0; col < nB; col++)
{
ka = 0;
for (unsigned long int row = 0; row < mB; row++)
{
dgemm(transpose, transpose, &mA, &nC, &mC, &B[mB*col+row], &A[ka], &mA, &C[0], &mC, &one, &D[kd], &mA);
ka += shiftA;
}
kd += shiftD;
}
#endif
}
void
full_A_times_kronecker_B_B(double *A, double *B, double *D, blas_int mA, blas_int nA, blas_int mB, blas_int nB)
{
#if USE_OMP
# pragma omp parallel for num_threads(atoi(getenv("DYNARE_NUM_THREADS")))
for (long int colD = 0; colD < nB*nB; colD++)
{
# if DEBUG_OMP
mexPrintf("%d thread number is %d (%d).\n", colD, omp_get_thread_num(), omp_get_num_threads());
# endif
unsigned int j1B = colD/nB;
unsigned int j2B = colD%nB;
for (int colA = 0; colA < nA; colA++)
{
unsigned int i1B = colA/mB;
unsigned int i2B = colA%mB;
unsigned int idxA = colA*mA;
unsigned int idxD = colD*mA;
double BB = B[j1B*mB+i1B]*B[j2B*mB+i2B];
for (int rowD = 0; rowD < mA; rowD++)
{
D[idxD+rowD] += A[idxA+rowD]*BB;
}
}
}
#else
const unsigned long int shiftA = mA*mB;
const unsigned long int shiftD = mA*nB;
unsigned long int kd = 0, ka = 0;
char transpose[2] = "N";
double one = 1.0;
for (unsigned long int col = 0; col < nB; col++)
{
ka = 0;
for (unsigned long int row = 0; row < mB; row++)
{
dgemm(transpose, transpose, &mA, &nB, &mB, &B[mB*col+row], &A[ka], &mA, &B[0], &mB, &one, &D[kd], &mA);
ka += shiftA;
}
kd += shiftD;
}
#endif
}
void
mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
// Check input and output:
if ((nrhs > 3) || (nrhs < 2))
{
mexErrMsgTxt("Two or Three input arguments required.");
}
if (nlhs > 1)
{
mexErrMsgTxt("Too many output arguments.");
}
// Get & Check dimensions (columns and rows):
mwSize mA, nA, mB, nB, mC, nC;
mA = mxGetM(prhs[0]);
nA = mxGetN(prhs[0]);
mB = mxGetM(prhs[1]);
nB = mxGetN(prhs[1]);
if (nrhs == 3) // A*kron(B,C) is to be computed.
{
mC = mxGetM(prhs[2]);
nC = mxGetN(prhs[2]);
if (mB*mC != nA)
{
mexErrMsgTxt("Input dimension error!");
}
}
else // A*kron(B,B) is to be computed.
{
if (mB*mB != nA)
{
mexErrMsgTxt("Input dimension error!");
}
}
// Get input matrices:
double *B, *C, *A;
A = mxGetPr(prhs[0]);
B = mxGetPr(prhs[1]);
if (nrhs == 3)
{
C = mxGetPr(prhs[2]);
}
// Initialization of the ouput:
double *D;
if (nrhs == 3)
{
plhs[0] = mxCreateDoubleMatrix(mA, nB*nC, mxREAL);
}
else
{
plhs[0] = mxCreateDoubleMatrix(mA, nB*nB, mxREAL);
}
D = mxGetPr(plhs[0]);
// Computational part:
if (nrhs == 2)
{
full_A_times_kronecker_B_B(A, B, &D[0], (int) mA, (int) nA, (int) mB, (int) nB);
}
else
{
full_A_times_kronecker_B_C(A, B, C, &D[0], (int) mA, (int) nA, (int) mB, (int) nB, (int) mC, (int) nC);
}
}