dynare/mex/sources/kalman/sylv/cc/GeneralMatrix.cpp

826 lines
24 KiB
C++

/* $Header: /var/lib/cvs/dynare_cpp/sylv/cc/GeneralMatrix.cpp,v 1.4 2004/11/24 20:41:59 kamenik Exp $ */
/* Tag $Name: $ */
#include "SylvException.h"
#include "GeneralMatrix.h"
#include "cppblas.h"
#include "cpplapack.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <cmath>
#include <limits>
//vector<int>nullVec(0);
int GeneralMatrix::md_length = 32;
GeneralMatrix::GeneralMatrix(const GeneralMatrix& m)
: data(m.rows*m.cols), rows(m.rows), cols(m.cols), ld(m.rows)
{
copy(m);
}
GeneralMatrix::GeneralMatrix(const ConstGeneralMatrix& m)
: data(m.rows*m.cols), rows(m.rows), cols(m.cols), ld(m.rows)
{
copy(m);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& m, const char* dummy)
: data(m.rows*m.cols), rows(m.cols), cols(m.rows), ld(m.cols)
{
for (int i = 0; i < m.rows; i++)
for (int j = 0; j < m.cols; j++)
get(j,i) = m.get(i,j);
}
GeneralMatrix::GeneralMatrix(const ConstGeneralMatrix& m, const char* dummy)
: data(m.rows*m.cols), rows(m.cols), cols(m.rows), ld(m.cols)
{
for (int i = 0; i < m.rows; i++)
for (int j = 0; j < m.cols; j++)
get(j,i) = m.get(i,j);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& m, int i, int j, int nrows, int ncols)
: data(nrows*ncols), rows(nrows), cols(ncols), ld(nrows)
{
copy(m, i, j);
}
GeneralMatrix::GeneralMatrix(GeneralMatrix& m, int i, int j, int nrows, int ncols)
: data(m.base()+m.ld*j+i, m.ld*(ncols-1)+nrows), rows(nrows), cols(ncols), ld(m.ld)
{}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const GeneralMatrix& b)
: data(a.rows*b.cols), rows(a.rows), cols(b.cols), ld(a.rows)
{
gemm("N", a, "N", b, 1.0, 0.0);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const GeneralMatrix& b, const char* dum)
: data(a.rows*b.rows), rows(a.rows), cols(b.rows), ld(a.rows)
{
gemm("N", a, "T", b, 1.0, 0.0);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const char* dum, const GeneralMatrix& b)
: data(a.cols*b.cols), rows(a.cols), cols(b.cols), ld(a.cols)
{
gemm("T", a, "N", b, 1.0, 0.0);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const char* dum1,
const GeneralMatrix& b, const char* dum2)
: data(a.cols*b.rows), rows(a.cols), cols(b.rows), ld(a.cols)
{
gemm("T", a, "T", b, 1.0, 0.0);
}
/* generate new matrix b as subset or whole of matrix a but reordered by
vrows and vcols as Matlab b=a(vrows,vcols) where vectors vrows and vcols start from 1.
It ignores non-positive elements passing zero length vector is equivalent
to Matlab operator ":" = all elements of that dimension in its order */
GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const vector<int>&vrows, const vector<int>&vcols)
{
int nrows=0, ncols=0;
if (vrows.size()==0 && vcols.size()==0)
{
*this=a;
return;
}
else
{
if (vrows.size()==0)
nrows=a.numRows();
else
{
for (int i=0;i<vrows.size();++i)
{
if (vrows[i]>0)
nrows++;
else
throw SYLV_MES_EXCEPTION("Non-positive indices in construction by vector.");
}
}
if (nrows>a.numRows())
throw SYLV_MES_EXCEPTION("Wrong dimensions for construction by vector.");
if (vcols.size()==0)
ncols=a.numCols();
else
{
for (int i=0;i<vcols.size();++i)
{
if (vcols[i]>0)
ncols++;
else
throw SYLV_MES_EXCEPTION("Non-positive indices in construction by vector.");
}
}
if (ncols>a.numCols())
throw SYLV_MES_EXCEPTION("Wrong dimensions for construction by vector.");
data= *(new Vector(nrows*ncols));
rows=nrows;
cols=ncols;
if(nrows*ncols==0) return;
for (int i=0;i<nrows;++i)
{
for (int j=0;j<nrows;++j)
if (vrows.size()!=0 && vcols.size()!=0)
{
if (vrows[i]>0 && vcols[j] >0)
get(i,j)=a.get(vrows[i]-1, vcols[j]-1);
}
else if (vrows.size()!=0 && vcols.size()==0)
{
if (vrows[i]>0 )
get(i,j)=a.get(vrows[i]-1, j);
}
else if (vrows.size()==0 && vcols.size()!=0)
{
if (vcols[j] >0)
get(i,j)=a.get(i, vcols[j]-1);
}
}
}
}
GeneralMatrix::~GeneralMatrix()
{
}
/* Matlab element product: this = this .*m */
void
GeneralMatrix::multElements(const GeneralMatrix& m)
{
if(cols!=m.numCols() || rows!=m.numRows())
throw SYLV_MES_EXCEPTION("multiply Element porduct: matrices must be same dimension.");
for (int i=0;i<cols;++i)
for (int j=0;j<rows;++j)
get(i,j)*=m.get(i,j);
};
/* emulates Matlab repmat: new matrix = multv*multh*this */
GeneralMatrix&
GeneralMatrix::repmat(int multv, int multh)
{
GeneralMatrix* repMat=(new GeneralMatrix ( multv*rows, multh*cols));
for (int i=0;i<multv;++i)
for (int j=0;j<multh;++j)
(*repMat).place(*this, multv*i, multh*j);
return *repMat;
};
void GeneralMatrix::place(const ConstGeneralMatrix& m, int i, int j)
{
if (i + m.numRows() > numRows() ||
j + m.numCols() > numCols())
throw SYLV_MES_EXCEPTION("Bad submatrix placement, matrix dimensions exceeded.");
GeneralMatrix tmpsub(*this, i, j, m.numRows(), m.numCols());
tmpsub.copy(m);
}
/* this = a*b */
void GeneralMatrix::mult(const ConstGeneralMatrix& a, const ConstGeneralMatrix& b)
{
gemm("N", a, "N", b, 1.0, 0.0);
}
/* this = this + scalar*a*b */
void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const ConstGeneralMatrix& b,
double mult)
{
gemm("N", a, "N", b, mult, 1.0);
}
/* this = this + scalar*a*b' */
void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const ConstGeneralMatrix& b,
const char* dum, double mult)
{
gemm("N", a, "T", b, mult, 1.0);
}
/* this = this + scalar*a'*b */
void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const char* dum,
const ConstGeneralMatrix& b, double mult)
{
gemm("T", a, "N", b, mult, 1.0);
}
/* this = this + scalar*a'*b' */
void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const char* dum1,
const ConstGeneralMatrix& b, const char* dum2, double mult)
{
gemm("T", a, "T", b, mult, 1.0);
}
void GeneralMatrix::addOuter(const ConstVector& a, double mult)
{
if (numRows() != numCols())
throw SYLV_MES_EXCEPTION("Matrix is not square in GeneralMatrix::addOuter.");
if (numRows() != a.length())
throw SYLV_MES_EXCEPTION("Wrong length of a vector in GeneralMatrix::addOuter.");
// since BLAS dsyr (symmetric rank 1 update) assumes symmetricity, we do this manually
for (int i = 0; i < numRows(); i++)
for (int j = i; j < numRows(); j++) {
double s = mult*a[i]*a[j];
get(i,j) = get(i,j) + s;
if (i != j)
get(j,i) = get(j,i) + s;
}
}
void GeneralMatrix::multRight(const ConstGeneralMatrix& m)
{
gemm_partial_right("N", m, 1.0, 0.0);
}
void GeneralMatrix::multLeft(const ConstGeneralMatrix& m)
{
gemm_partial_left("N", m, 1.0, 0.0);
}
void GeneralMatrix::multRightTrans(const ConstGeneralMatrix& m)
{
gemm_partial_right("T", m, 1.0, 0.0);
}
void GeneralMatrix::multLeftTrans(const ConstGeneralMatrix& m)
{
gemm_partial_left("T", m, 1.0, 0.0);
}
/* this = this * A^(-1) */
void
GeneralMatrix::multInvRight( GeneralMatrix&A)
{
// check or allocate tmp space for Transpose *this
/**
if (tmpGMp)
{
if (tmpGMp->numCols()!=rows || tmpGMp->numRows()!=cols)
delete (tmpGMp);
}
if (!tmpGMp)
********/
tmpGMp= new GeneralMatrix(cols,rows); // allocate space only once if and when needed!
// tmpGMp=(*this)' i.e. Transpose (*this)
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
tmpGMp->get(j,i) = get(i,j);
// check A and this suiability
const int mcols=A.numCols();
if (A.numRows() != mcols) {
throw SYLV_MES_EXCEPTION("The matrix is not square for inversion.");
}
if (cols != A.numRows()) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for matrix inverse mutliply.");
}
if (rows > 0)
{
/* out =tmpGMp out = inv(A')*(*this)' = inv(A')*(*tmpGMp) */
int* ipiv = new int[cols];
int info;
const int mld=A.getLD();
LAPACK_dgetrf(&cols, &cols, A.base(), &cols, ipiv, &info);
LAPACK_dgetrs("T", &cols, &mcols, A.base(), &cols, ipiv, tmpGMp->base(),
&mld, &info);
delete [] ipiv;
// *this= Transpose(tmpGMp out)
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) = tmpGMp->get(j,i);
}
delete tmpGMp;
}
// here we must be careful for ld
void GeneralMatrix::zeros()
{
if (ld == rows)
data.zeros();
else {
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) = 0;
}
}
void GeneralMatrix::unit()
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
if (i == j)
get(i,j) = 1.0;
else
get(i,j) = 0.0;
}
void GeneralMatrix::nans()
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) = std::numeric_limits<double>::quiet_NaN();
}
void GeneralMatrix::infs()
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) = std::numeric_limits<double>::infinity();
}
// here we must be careful for ld
void GeneralMatrix::mult(double a)
{
if (ld == rows)
data.mult(a);
else {
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) *= a;
}
}
// here we must be careful for ld
void GeneralMatrix::add(double a, const ConstGeneralMatrix& m)
{
if (m.numRows() != rows || m.numCols() != cols)
throw SYLV_MES_EXCEPTION("Matrix has different size in GeneralMatrix::add.");
if (ld == rows && m.ld == m.rows)
data.add(a, m.data);
else {
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) += a*m.get(i,j);
}
}
void GeneralMatrix::add(double a, const ConstGeneralMatrix& m, const char* dum)
{
if (m.numRows() != cols || m.numCols() != rows)
throw SYLV_MES_EXCEPTION("Matrix has different size in GeneralMatrix::add.");
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) += a*m.get(j,i);
}
bool GeneralMatrix::isDiff(const GeneralMatrix& m, const double tol=0.0)const
{
if (m.numRows() != rows || m.numCols() != cols)
throw SYLV_MES_EXCEPTION("Matrix has different size in GeneralMatrix::isDiff.");
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
if (fabs(get(i,j) - m.get(i,j))>tol)
return true;
return false;
}
bool GeneralMatrix::isDiffSym(const GeneralMatrix& m, const double tol=0.0)const
{
if (m.numRows() != rows || m.numCols() != cols || m.numRows() != cols || m.numCols() != rows)
throw SYLV_MES_EXCEPTION("Matrix has different size or not square in GeneralMatrix::isDiffSym.");
for (int i = 0; i < cols; i++)
for (int j = 0; i+j < cols ; j++) // traverse the upper triangle only
if (fabs(get(j,j+i) - m.get(j,j+i))>tol) // along diagonals where higher changes occur
return true;
return false;
}
/* x = scalar(a)*x + scalar(b)*this*d */
void GeneralMatrix::multVec(double a, Vector& x, double b, const ConstVector& d) const
{
if (x.length() != rows || cols != d.length()) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for vector multiply.");
}
if (rows > 0) {
int mm = rows;
int nn = cols;
double alpha = b;
int lda = ld;
int incx = d.skip();
double beta = a;
int incy = x.skip();
BLAS_dgemv("N", &mm, &nn, &alpha, data.base(), &lda, d.base(), &incx,
&beta, x.base(), &incy);
}
}
void GeneralMatrix::copy(const ConstGeneralMatrix& m, int ioff, int joff)
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) = m.get(i+ioff,j+joff);
}
void
GeneralMatrix::copy(const ConstGeneralMatrix& m)
{
memcpy(data.base() ,m.getData().base() ,m.numCols()*m.numRows()*sizeof(double));
};
void
GeneralMatrix::copy(const GeneralMatrix& m)
{
memcpy(data.base(),m.getData().base(),m.numCols()*m.numRows()*sizeof(double));
};
void
GeneralMatrix::copyColumns(const GeneralMatrix& m, int istart, int iend, int ito)
{
if ((rows!=m.numRows())|| istart<iend|| istart> m.numCols()-1 || iend> m.numCols()-1
|| ito> cols-1 )
throw SYLV_MES_EXCEPTION("Wrong dimensions for copying matrix columns.");
memcpy(data.base()+ito*rows*sizeof(double)
,m.getData().base()+istart*rows*sizeof(double)
,(iend-istart+1)*rows*sizeof(double));
};
/* emulates Matlab command A(a,b)=B(c,d) where a,b,c,d are vectors or ":")*/
void
GeneralMatrix::AssignByVectors(GeneralMatrix& a, const vector<int>& vToRows, const vector<int>& vToCols
, const GeneralMatrix& b, const vector<int>& vrows, const vector<int>& vcols)
{
int nrows=0, ncols=0, tonrows=0, toncols=0;
const vector<int> *vpToCols=0, *vpToRows=0, *vpRows=0, *vpCols=0;
vector<int> *tmpvpToCols=0, *tmpvpToRows=0, *tmpvpRows=0, *tmpvpCols=0;
if (vToRows.size()==0 && vToCols.size()==0 &&vrows.size()==0 && vcols.size()==0)
a=b;
else
{
if (vToRows.size()==0)
{
tonrows=a.numRows();
// vpToRows=new vector<int>(tonrows);
tmpvpToRows=new vector<int>(tonrows);
for (int i=0;i<tonrows;++i)
(*tmpvpToRows)[i]=i+1;
vpToRows=(const vector<int>*)tmpvpToRows;
}
else
{
for (int i=0;i<vToRows.size();++i)
{
if (vToRows[i]>0)
tonrows++;
else
throw SYLV_MES_EXCEPTION("Non-positive indices in assignment by vector.");
}
vpToRows=&vToRows;
}
if (tonrows>a.numRows())
throw SYLV_MES_EXCEPTION("Wrong dimensions for assignment by vector.");
if (vToCols.size()==0)
{
toncols=a.numCols();
tmpvpToCols=new vector<int>(toncols);
for (int i=0;i<toncols;++i)
(*tmpvpToCols)[i]=i+1;
vpToCols=(const vector<int>*)tmpvpToCols;
}
else
{
for (int i=0;i<vToCols.size();++i)
{
if (vToCols[i]>0)
toncols++;
else
throw SYLV_MES_EXCEPTION("Non-positive indices in assignment by vector.");
}
vpToCols=&vToCols;
}
if (toncols>a.numCols())
throw SYLV_MES_EXCEPTION("Wrong dimensions for assignment by vector.");
if (vrows.size()==0)
{
nrows=b.numRows();
tmpvpRows=new vector<int>(nrows);
for (int i=0;i<nrows;++i)
(*tmpvpToRows)[i]=i+1;
vpRows=(const vector<int>*)tmpvpRows;
}
else
{
for (int i=0;i<vrows.size();++i)
{
if (vrows[i]>0)
nrows++;
else
throw SYLV_MES_EXCEPTION("Non-positive indices in assignment by vector.");
}
vpRows=&vrows;
}
if (nrows>b.numRows())
throw SYLV_MES_EXCEPTION("Wrong dimensions for assignment by vector.");
if (vcols.size()==0)
{
ncols=b.numCols();
tmpvpCols=new vector<int>(ncols);
for (int i=0;i<ncols;++i)
(*tmpvpCols)[i]=i+1;
vpCols=(const vector<int>*)tmpvpCols;
}
else
{
for (int i=0;i<vcols.size();++i)
{
if (vcols[i]>0)
ncols++;
else
throw SYLV_MES_EXCEPTION("Non-positive indices in assignment by vector.");
}
vpCols=&vcols;
}
if (ncols>b.numCols())
throw SYLV_MES_EXCEPTION("Wrong dimensions for assignment by vector.");
if (tonrows!=nrows || toncols!=ncols)
throw SYLV_MES_EXCEPTION("Wrong indices dimensions for assignment by vector.");
if(!(nrows*ncols==0 || tonrows*toncols==0))
{
for (int i=0;i<nrows;++i)
{
for (int j=0;j<nrows;++j)
a.get((*vpToRows)[i]-1,(*vpToCols)[j]-1)=b.get((*vpRows)[i]-1, (*vpCols)[j]-1);
}
}
if (tmpvpToCols) delete(tmpvpToCols);
if (tmpvpToRows) delete(tmpvpToRows);
if (tmpvpRows) delete(tmpvpRows);
if (tmpvpCols) delete(tmpvpCols);
}
}
void GeneralMatrix::gemm(const char* transa, const ConstGeneralMatrix& a,
const char* transb, const ConstGeneralMatrix& b,
double alpha, double beta)
{
int opa_rows = a.numRows();
int opa_cols = a.numCols();
if (!strcmp(transa, "T")) {
opa_rows = a.numCols();
opa_cols = a.numRows();
}
int opb_rows = b.numRows();
int opb_cols = b.numCols();
if (!strcmp(transb, "T")) {
opb_rows = b.numCols();
opb_cols = b.numRows();
}
if (opa_rows != numRows() ||
opb_cols != numCols() ||
opa_cols != opb_rows) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for matrix multiplication.");
}
int m = opa_rows;
int n = opb_cols;
int k = opa_cols;
int lda = a.ld;
int ldb = b.ld;
int ldc = ld;
if (lda > 0 && ldb > 0 && ldc > 0) {
BLAS_dgemm(transa, transb, &m, &n, &k, &alpha, a.data.base(), &lda,
b.data.base(), &ldb, &beta, data.base(), &ldc);
} else if (numRows()*numCols() > 0) {
if (beta == 0.0)
zeros();
else
mult(beta);
}
}
void GeneralMatrix::gemm_partial_left(const char* trans, const ConstGeneralMatrix& m,
double alpha, double beta)
{
int icol;
for (icol = 0; icol + md_length < cols; icol += md_length) {
GeneralMatrix incopy((const GeneralMatrix&)*this, 0, icol, rows, md_length);
GeneralMatrix inplace((GeneralMatrix&)*this, 0, icol, rows, md_length);
inplace.gemm(trans, m, "N", ConstGeneralMatrix(incopy), alpha, beta);
}
if (cols > icol) {
GeneralMatrix incopy((const GeneralMatrix&)*this, 0, icol, rows, cols - icol);
GeneralMatrix inplace((GeneralMatrix&)*this, 0, icol, rows, cols - icol);
inplace.gemm(trans, m, "N", ConstGeneralMatrix(incopy), alpha, beta);
}
}
void GeneralMatrix::gemm_partial_right(const char* trans, const ConstGeneralMatrix& m,
double alpha, double beta)
{
int irow;
for (irow = 0; irow + md_length < rows; irow += md_length) {
GeneralMatrix incopy((const GeneralMatrix&)*this, irow, 0, md_length, cols);
GeneralMatrix inplace((GeneralMatrix&)*this, irow, 0, md_length, cols);
inplace.gemm("N", ConstGeneralMatrix(incopy), trans, m, alpha, beta);
}
if (rows > irow) {
GeneralMatrix incopy((const GeneralMatrix&)*this, irow, 0, rows - irow, cols);
GeneralMatrix inplace((GeneralMatrix&)*this, irow, 0, rows - irow, cols);
inplace.gemm("N", ConstGeneralMatrix(incopy), trans, m, alpha, beta);
}
}
ConstGeneralMatrix::ConstGeneralMatrix(const GeneralMatrix& m, int i, int j, int nrows, int ncols)
: data(m.getData(), j*m.getLD()+i, (ncols-1)*m.getLD()+nrows), rows(nrows), cols(ncols), ld(m.getLD())
{
// can check that the submatirx is fully in the matrix
}
ConstGeneralMatrix::ConstGeneralMatrix(const ConstGeneralMatrix& m, int i, int j, int nrows, int ncols)
: data(m.getData(), j*m.getLD()+i, (ncols-1)*m.getLD()+nrows), rows(nrows), cols(ncols), ld(m.getLD())
{
// can check that the submatirx is fully in the matrix
}
ConstGeneralMatrix::ConstGeneralMatrix(const GeneralMatrix& m)
: data(m.data), rows(m.rows), cols(m.cols), ld(m.ld) {}
double ConstGeneralMatrix::getNormInf() const
{
double norm = 0.0;
for (int i = 0; i < numRows(); i++) {
ConstVector rowi(data.base()+i, ld, cols);
double normi = rowi.getNorm1();
if (norm < normi)
norm = normi;
}
return norm;
}
double ConstGeneralMatrix::getNorm1() const
{
double norm = 0.0;
for (int j = 0; j < numCols(); j++) {
ConstVector colj(data.base()+ld*j, 1, rows);
double normj = colj.getNorm1();
if (norm < normj)
norm = normj;
}
return norm;
}
/* x = scalar(a)*x + scalar(b)*this*d */
void ConstGeneralMatrix::multVec(double a, Vector& x, double b, const ConstVector& d) const
{
if (x.length() != rows || cols != d.length()) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for vector multiply.");
}
if (rows > 0) {
int mm = rows;
int nn = cols;
double alpha = b;
int lda = ld;
int incx = d.skip();
double beta = a;
int incy = x.skip();
BLAS_dgemv("N", &mm, &nn, &alpha, data.base(), &lda, d.base(), &incx,
&beta, x.base(), &incy);
}
}
void ConstGeneralMatrix::multVecTrans(double a, Vector& x, double b,
const ConstVector& d) const
{
if (x.length() != cols || rows != d.length()) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for vector multiply.");
}
if (rows > 0) {
int mm = rows;
int nn = cols;
double alpha = b;
int lda = rows;
int incx = d.skip();
double beta = a;
int incy = x.skip();
BLAS_dgemv("T", &mm, &nn, &alpha, data.base(), &lda, d.base(), &incx,
&beta, x.base(), &incy);
}
}
/* m = inv(this)*m */
void ConstGeneralMatrix::multInvLeft(const char* trans, int mrows, int mcols, int mld, double* d) const
{
if (rows != cols) {
throw SYLV_MES_EXCEPTION("The matrix is not square for inversion.");
}
if (cols != mrows) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for matrix inverse mutliply.");
}
if (rows > 0) {
GeneralMatrix inv(*this);
int* ipiv = new int[rows];
int info;
LAPACK_dgetrf(&rows, &rows, inv.getData().base(), &rows, ipiv, &info);
LAPACK_dgetrs(trans, &rows, &mcols, inv.base(), &rows, ipiv, d,
&mld, &info);
delete [] ipiv;
}
}
/* m = inv(this)*m */
void ConstGeneralMatrix::multInvLeft(GeneralMatrix& m) const
{
multInvLeft("N", m.numRows(), m.numCols(), m.getLD(), m.getData().base());
}
/* m = inv(this')*m */
void ConstGeneralMatrix::multInvLeftTrans(GeneralMatrix& m) const
{
multInvLeft("T", m.numRows(), m.numCols(), m.getLD(), m.getData().base());
}
/* d = inv(this)*d */
void ConstGeneralMatrix::multInvLeft(Vector& d) const
{
if (d.skip() != 1) {
throw SYLV_MES_EXCEPTION("Skip!=1 not implemented in ConstGeneralMatrix::multInvLeft(Vector&)");
}
multInvLeft("N", d.length(), 1, d.length(), d.base());
}
/* d = inv(this')*d */
void ConstGeneralMatrix::multInvLeftTrans(Vector& d) const
{
if (d.skip() != 1) {
throw SYLV_MES_EXCEPTION("Skip!=1 not implemented in ConstGeneralMatrix::multInvLeft(Vector&)");
}
multInvLeft("T", d.length(), 1, d.length(), d.base());
}
bool ConstGeneralMatrix::isFinite() const
{
for (int i = 0; i < numRows(); i++)
for (int j = 0; j < numCols(); j++)
if (! std::isfinite(get(i,j)))
return false;
return true;
}
bool ConstGeneralMatrix::isZero() const
{
for (int i = 0; i < numRows(); i++)
for (int j = 0; j < numCols(); j++)
if (get(i,j) != 0.0)
return false;
return true;
}
void ConstGeneralMatrix::print() const
{
printf("rows=%d, cols=%d\n",rows, cols);
for (int i = 0; i < rows; i++) {
printf("row %d:\n",i);
for (int j = 0; j < cols; j++) {
printf("%6.3g ",get(i,j));
}
printf("\n");
}
}