dynare/dynare++/tl/cc/fs_tensor.cweb

306 lines
9.1 KiB
Plaintext

@q $Id: fs_tensor.cweb 280 2005-06-13 09:40:02Z kamenik $ @>
@q Copyright 2004, Ondra Kamenik @>
@ Start of {\tt fs\_tensor.cpp} file.
@c
#include "fs_tensor.h"
#include "gs_tensor.h"
#include "sparse_tensor.h"
#include "rfs_tensor.h"
#include "tl_exception.h"
@<|FFSTensor| contraction constructor@>;
@<|FFSTensor::calcMaxOffset| code@>;
@<|FFSTensor| conversion from sparse@>;
@<|FFSTensor| conversion from unfolded@>;
@<|FFSTensor::unfold| code@>;
@<|FFSTensor::increment| code@>;
@<|FFSTensor::decrement| code@>;
@<|FFSTensor::getOffset| code@>;
@<|FFSTensor::addSubTensor| code@>;
@<|UFSTensor| contraction constructor@>;
@<|UFSTensor| conversion from folded@>;
@<|UFSTensor::fold| code@>;
@<|UFSTensor| increment and decrement@>;
@<|UFSTensor::getOffset| code@>;
@<|UFSTensor::addSubTensor| code@>;
@<|UFSTensor::unfoldData| code@>;
@ This constructs a fully symmetric tensor as given by the contraction:
$$\left[g_{y^n}\right]_{\alpha_1\ldots\alpha_n}=
\left[t_{y^{n+1}}\right]_{\alpha_1\ldots\alpha_n\beta}[x]^\beta$$
We go through all columns of output tensor $[g]$ and for each column
we cycle through all variables, insert a variable to the column
coordinates obtaining a column of tensor $[t]$. the column is multiplied
by an appropriate item of |x| and added to the column of $[g]$ tensor.
@<|FFSTensor| contraction constructor@>=
FFSTensor::FFSTensor(const FFSTensor& t, const ConstVector& x)
: FTensor(along_col, IntSequence(t.dimen()-1, t.nvar()),
t.nrows(), calcMaxOffset(t.nvar(), t.dimen()-1), t.dimen()-1),
nv(t.nvar())
{
TL_RAISE_IF(t.dimen() < 1,
"Wrong dimension for tensor contraction of FFSTensor");
TL_RAISE_IF(t.nvar() != x.length(),
"Wrong number of variables for tensor contraction of FFSTensor");
zeros();
for (Tensor::index to = begin(); to != end(); ++to) {
for (int i = 0; i < nvar(); i++) {
IntSequence from_ind(i, to.getCoor());
Tensor::index from(&t, from_ind);
addColumn(x[i], t, *from, *to);
}
}
}
@ This returns number of indices for folded tensor with full
symmetry. Let $n$ be a number of variables |nvar| and $d$ the
dimension |dim|. Then the number of indices is $\pmatrix{n+d-1\cr d}$.
@<|FFSTensor::calcMaxOffset| code@>=
int FFSTensor::calcMaxOffset(int nvar, int d)
{
if (nvar == 0 && d == 0)
return 1;
if (nvar == 0 && d > 0)
return 0;
return noverk(nvar + d - 1, d);
}
@ The conversion from sparse tensor is clear. We go through all the
tensor and write to the dense what is found.
@<|FFSTensor| conversion from sparse@>=
FFSTensor::FFSTensor(const FSSparseTensor& t)
: FTensor(along_col, IntSequence(t.dimen(), t.nvar()),
t.nrows(), calcMaxOffset(t.nvar(), t.dimen()), t.dimen()),
nv(t.nvar())
{
zeros();
for (FSSparseTensor::const_iterator it = t.getMap().begin();
it != t.getMap().end(); ++it) {
index ind(this, (*it).first);
get((*it).second.first, *ind) = (*it).second.second;
}
}
@ The conversion from unfolded copies only columns of respective
coordinates. So we go through all the columns in the folded tensor
(this), make an index of the unfolded vector from coordinates, and
copy the column.
@<|FFSTensor| conversion from unfolded@>=
FFSTensor::FFSTensor(const UFSTensor& ut)
: FTensor(along_col, IntSequence(ut.dimen(), ut.nvar()),
ut.nrows(), calcMaxOffset(ut.nvar(), ut.dimen()), ut.dimen()),
nv(ut.nvar())
{
for (index in = begin(); in != end(); ++in) {
index src(&ut, in.getCoor());
copyColumn(ut, *src, *in);
}
}
@ Here just make a new instance and return the reference.
@<|FFSTensor::unfold| code@>=
UTensor& FFSTensor::unfold() const
{
return *(new UFSTensor(*this));
}
@ Incrementing is easy. We have to increment by calling static method
|UTensor::increment| first. In this way, we have coordinates of
unfolded tensor. Then we have to skip to the closest folded index
which corresponds to monotonizeing the integer sequence.
@<|FFSTensor::increment| code@>=
void FFSTensor::increment(IntSequence& v) const
{
TL_RAISE_IF(v.size() != dimen(),
"Wrong input/output vector size in FFSTensor::increment");
UTensor::increment(v, nv);
v.monotone();
}
@ Decrement calls static |FTensor::decrement|.
@<|FFSTensor::decrement| code@>=
void FFSTensor::decrement(IntSequence& v) const
{
TL_RAISE_IF(v.size() != dimen(),
"Wrong input/output vector size in FFSTensor::decrement");
FTensor::decrement(v, nv);
}
@
@<|FFSTensor::getOffset| code@>=
int FFSTensor::getOffset(const IntSequence& v) const
{
TL_RAISE_IF(v.size() != dimen(),
"Wrong input vector size in FFSTensor::getOffset");
return FTensor::getOffset(v, nv);
}
@ Here we add a general symmetry tensor to the (part of) full symmetry
tensor provided that the unique variable of the full symmetry tensor
is a stack of variables from the general symmetry tensor.
We check for the dimensions and number of variables. Then we calculate
a shift of coordinates when going from the general symmetry tensor to
full symmetry (it corresponds to shift of coordinates induces by
stacking the variables). Then we add the appropriate columns by going
through the columns in general symmetry, adding the shift and sorting.
@<|FFSTensor::addSubTensor| code@>=
void FFSTensor::addSubTensor(const FGSTensor& t)
{
TL_RAISE_IF(dimen() != t.getDims().dimen(),
"Wrong dimensions for FFSTensor::addSubTensor");
TL_RAISE_IF(nvar() != t.getDims().getNVS().sum(),
"Wrong nvs for FFSTensor::addSubTensor");
@<set shift for |addSubTensor|@>;
for (Tensor::index ind = t.begin(); ind != t.end(); ++ind) {
IntSequence c(ind.getCoor());
c.add(1, shift);
c.sort();
Tensor::index tar(this, c);
addColumn(t, *ind, *tar);
}
}
@
@<set shift for |addSubTensor|@>=
IntSequence shift_pre(t.getSym().num(), 0);
for (int i = 1; i < t.getSym().num(); i++)
shift_pre[i] = shift_pre[i-1]+t.getDims().getNVS()[i-1];
IntSequence shift(t.getSym(), shift_pre);
@ This is a bit more straightforward than |@<|FFSTensor| contraction constructor@>|.
We do not add column by column but we do it by submatrices due to
regularity of the unfolded tensor.
@<|UFSTensor| contraction constructor@>=
UFSTensor::UFSTensor(const UFSTensor& t, const ConstVector& x)
: UTensor(along_col, IntSequence(t.dimen()-1, t.nvar()),
t.nrows(), calcMaxOffset(t.nvar(), t.dimen()-1), t.dimen()-1),
nv(t.nvar())
{
TL_RAISE_IF(t.dimen() < 1,
"Wrong dimension for tensor contraction of UFSTensor");
TL_RAISE_IF(t.nvar() != x.length(),
"Wrong number of variables for tensor contraction of UFSTensor");
zeros();
for (int i = 0; i < ncols(); i++) {
ConstTwoDMatrix tpart(t, i*nvar(), nvar());
Vector outcol(*this, i);
tpart.multaVec(outcol, x);
}
}
@ Here we convert folded full symmetry tensor to unfolded. We copy all
columns of folded tensor, and then call |unfoldData()|.
@<|UFSTensor| conversion from folded@>=
UFSTensor::UFSTensor(const FFSTensor& ft)
: UTensor(along_col, IntSequence(ft.dimen(), ft.nvar()),
ft.nrows(), calcMaxOffset(ft.nvar(), ft.dimen()), ft.dimen()),
nv(ft.nvar())
{
for (index src = ft.begin(); src != ft.end(); ++src) {
index in(this, src.getCoor());
copyColumn(ft, *src, *in);
}
unfoldData();
}
@ Here we just return a reference to new instance of folded tensor.
@<|UFSTensor::fold| code@>=
FTensor& UFSTensor::fold() const
{
return *(new FFSTensor(*this));
}
@ Here we just call |UTensor| respective static methods.
@<|UFSTensor| increment and decrement@>=
void UFSTensor::increment(IntSequence& v) const
{
TL_RAISE_IF(v.size() != dimen(),
"Wrong input/output vector size in UFSTensor::increment");
UTensor::increment(v, nv);
}
void UFSTensor::decrement(IntSequence& v) const
{
TL_RAISE_IF(v.size() != dimen(),
"Wrong input/output vector size in UFSTensor::decrement");
UTensor::decrement(v, nv);
}
@
@<|UFSTensor::getOffset| code@>=
int UFSTensor::getOffset(const IntSequence& v) const
{
TL_RAISE_IF(v.size() != dimen(),
"Wrong input vector size in UFSTensor::getOffset");
return UTensor::getOffset(v, nv);
}
@ This is very similar to |@<|FFSTensor::addSubTensor| code@>|. The
only difference is the addition. We go through all columns in the full
symmetry tensor and cancel the shift. If the coordinates after the
cancellation are positive, we find the column in the general symmetry
tensor, and add it.
@<|UFSTensor::addSubTensor| code@>=
void UFSTensor::addSubTensor(const UGSTensor& t)
{
TL_RAISE_IF(dimen() != t.getDims().dimen(),
"Wrong dimensions for UFSTensor::addSubTensor");
TL_RAISE_IF(nvar() != t.getDims().getNVS().sum(),
"Wrong nvs for UFSTensor::addSubTensor");
@<set shift for |addSubTensor|@>;
for (Tensor::index tar = begin(); tar != end(); ++tar) {
IntSequence c(tar.getCoor());
c.sort();
c.add(-1, shift);
if (c.isPositive() && c.less(t.getDims().getNVX())) {
Tensor::index from(&t, c);
addColumn(t, *from, *tar);
}
}
}
@ Here we go through all columns, find a column of folded index, and
then copy the column data. Finding the index is done by sorting the
integer sequence.
@<|UFSTensor::unfoldData| code@>=
void UFSTensor::unfoldData()
{
for (index in = begin(); in != end(); ++in) {
IntSequence v(in.getCoor());
v.sort();
index tmp(this, v);
copyColumn(*tmp, *in);
}
}
@ End of {\tt fs\_tensor.cpp} file.