dynare/dynare++/sylv/cc/GeneralMatrix.cpp

557 lines
14 KiB
C++

/* $Header: /var/lib/cvs/dynare_cpp/sylv/cc/GeneralMatrix.cpp,v 1.4 2004/11/24 20:41:59 kamenik Exp $ */
/* Tag $Name: $ */
#include "SylvException.h"
#include "GeneralMatrix.h"
#include <dynblas.h>
#include <dynlapack.h>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <limits>
int GeneralMatrix::md_length = 32;
GeneralMatrix::GeneralMatrix(const GeneralMatrix& m)
: data(m.rows*m.cols), rows(m.rows), cols(m.cols), ld(m.rows)
{
copy(m);
}
GeneralMatrix::GeneralMatrix(const ConstGeneralMatrix& m)
: data(m.rows*m.cols), rows(m.rows), cols(m.cols), ld(m.rows)
{
copy(m);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& m, const char* dummy)
: data(m.rows*m.cols), rows(m.cols), cols(m.rows), ld(m.cols)
{
for (int i = 0; i < m.rows; i++)
for (int j = 0; j < m.cols; j++)
get(j,i) = m.get(i,j);
}
GeneralMatrix::GeneralMatrix(const ConstGeneralMatrix& m, const char* dummy)
: data(m.rows*m.cols), rows(m.cols), cols(m.rows), ld(m.cols)
{
for (int i = 0; i < m.rows; i++)
for (int j = 0; j < m.cols; j++)
get(j,i) = m.get(i,j);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& m, int i, int j, int nrows, int ncols)
: data(nrows*ncols), rows(nrows), cols(ncols), ld(nrows)
{
copy(m, i, j);
}
GeneralMatrix::GeneralMatrix(GeneralMatrix& m, int i, int j, int nrows, int ncols)
: data(m.base()+m.ld*j+i, m.ld*(ncols-1)+nrows), rows(nrows), cols(ncols), ld(m.ld)
{}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const GeneralMatrix& b)
: data(a.rows*b.cols), rows(a.rows), cols(b.cols), ld(a.rows)
{
gemm("N", a, "N", b, 1.0, 0.0);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const GeneralMatrix& b, const char* dum)
: data(a.rows*b.rows), rows(a.rows), cols(b.rows), ld(a.rows)
{
gemm("N", a, "T", b, 1.0, 0.0);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const char* dum, const GeneralMatrix& b)
: data(a.cols*b.cols), rows(a.cols), cols(b.cols), ld(a.cols)
{
gemm("T", a, "N", b, 1.0, 0.0);
}
GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const char* dum1,
const GeneralMatrix& b, const char* dum2)
: data(a.cols*b.rows), rows(a.cols), cols(b.rows), ld(a.cols)
{
gemm("T", a, "T", b, 1.0, 0.0);
}
GeneralMatrix::~GeneralMatrix()
{
}
void GeneralMatrix::place(const ConstGeneralMatrix& m, int i, int j)
{
if (i + m.numRows() > numRows() ||
j + m.numCols() > numCols())
throw SYLV_MES_EXCEPTION("Bad submatrix placement, matrix dimensions exceeded.");
GeneralMatrix tmpsub(*this, i, j, m.numRows(), m.numCols());
tmpsub.copy(m);
}
void GeneralMatrix::mult(const ConstGeneralMatrix& a, const ConstGeneralMatrix& b)
{
gemm("N", a, "N", b, 1.0, 0.0);
}
void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const ConstGeneralMatrix& b,
double mult)
{
gemm("N", a, "N", b, mult, 1.0);
}
void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const ConstGeneralMatrix& b,
const char* dum, double mult)
{
gemm("N", a, "T", b, mult, 1.0);
}
void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const char* dum,
const ConstGeneralMatrix& b, double mult)
{
gemm("T", a, "N", b, mult, 1.0);
}
void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const char* dum1,
const ConstGeneralMatrix& b, const char* dum2, double mult)
{
gemm("T", a, "T", b, mult, 1.0);
}
void GeneralMatrix::addOuter(const ConstVector& a, double mult)
{
if (numRows() != numCols())
throw SYLV_MES_EXCEPTION("Matrix is not square in GeneralMatrix::addOuter.");
if (numRows() != a.length())
throw SYLV_MES_EXCEPTION("Wrong length of a vector in GeneralMatrix::addOuter.");
// since BLAS dsyr (symmetric rank 1 update) assumes symmetricity, we do this manually
for (int i = 0; i < numRows(); i++)
for (int j = i; j < numRows(); j++) {
double s = mult*a[i]*a[j];
get(i,j) = get(i,j) + s;
if (i != j)
get(j,i) = get(j,i) + s;
}
}
void GeneralMatrix::multRight(const ConstGeneralMatrix& m)
{
gemm_partial_right("N", m, 1.0, 0.0);
}
void GeneralMatrix::multLeft(const ConstGeneralMatrix& m)
{
gemm_partial_left("N", m, 1.0, 0.0);
}
void GeneralMatrix::multRightTrans(const ConstGeneralMatrix& m)
{
gemm_partial_right("T", m, 1.0, 0.0);
}
void GeneralMatrix::multLeftTrans(const ConstGeneralMatrix& m)
{
gemm_partial_left("T", m, 1.0, 0.0);
}
// here we must be careful for ld
void GeneralMatrix::zeros()
{
if (ld == rows)
data.zeros();
else {
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) = 0;
}
}
void GeneralMatrix::unit()
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
if (i == j)
get(i,j) = 1.0;
else
get(i,j) = 0.0;
}
void GeneralMatrix::nans()
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) = std::numeric_limits<double>::quiet_NaN();
}
void GeneralMatrix::infs()
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) = std::numeric_limits<double>::infinity();
}
// here we must be careful for ld
void GeneralMatrix::mult(double a)
{
if (ld == rows)
data.mult(a);
else {
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) *= a;
}
}
// here we must be careful for ld
void GeneralMatrix::add(double a, const ConstGeneralMatrix& m)
{
if (m.numRows() != rows || m.numCols() != cols)
throw SYLV_MES_EXCEPTION("Matrix has different size in GeneralMatrix::add.");
if (ld == rows && m.ld == m.rows)
data.add(a, m.data);
else {
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) += a*m.get(i,j);
}
}
void GeneralMatrix::add(double a, const ConstGeneralMatrix& m, const char* dum)
{
if (m.numRows() != cols || m.numCols() != rows)
throw SYLV_MES_EXCEPTION("Matrix has different size in GeneralMatrix::add.");
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) += a*m.get(j,i);
}
void GeneralMatrix::copy(const ConstGeneralMatrix& m, int ioff, int joff)
{
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
get(i,j) = m.get(i+ioff,j+joff);
}
void GeneralMatrix::gemm(const char* transa, const ConstGeneralMatrix& a,
const char* transb, const ConstGeneralMatrix& b,
double alpha, double beta)
{
int opa_rows = a.numRows();
int opa_cols = a.numCols();
if (!strcmp(transa, "T")) {
opa_rows = a.numCols();
opa_cols = a.numRows();
}
int opb_rows = b.numRows();
int opb_cols = b.numCols();
if (!strcmp(transb, "T")) {
opb_rows = b.numCols();
opb_cols = b.numRows();
}
if (opa_rows != numRows() ||
opb_cols != numCols() ||
opa_cols != opb_rows) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for matrix multiplication.");
}
blas_int m = opa_rows;
blas_int n = opb_cols;
blas_int k = opa_cols;
blas_int lda = a.ld;
blas_int ldb = b.ld;
blas_int ldc = ld;
if (lda > 0 && ldb > 0 && ldc > 0) {
dgemm(transa, transb, &m, &n, &k, &alpha, a.data.base(), &lda,
b.data.base(), &ldb, &beta, data.base(), &ldc);
} else if (numRows()*numCols() > 0) {
if (beta == 0.0)
zeros();
else
mult(beta);
}
}
void GeneralMatrix::gemm_partial_left(const char* trans, const ConstGeneralMatrix& m,
double alpha, double beta)
{
int icol;
for (icol = 0; icol + md_length < cols; icol += md_length) {
GeneralMatrix incopy((const GeneralMatrix&)*this, 0, icol, rows, md_length);
GeneralMatrix inplace((GeneralMatrix&)*this, 0, icol, rows, md_length);
inplace.gemm(trans, m, "N", ConstGeneralMatrix(incopy), alpha, beta);
}
if (cols > icol) {
GeneralMatrix incopy((const GeneralMatrix&)*this, 0, icol, rows, cols - icol);
GeneralMatrix inplace((GeneralMatrix&)*this, 0, icol, rows, cols - icol);
inplace.gemm(trans, m, "N", ConstGeneralMatrix(incopy), alpha, beta);
}
}
void GeneralMatrix::gemm_partial_right(const char* trans, const ConstGeneralMatrix& m,
double alpha, double beta)
{
int irow;
for (irow = 0; irow + md_length < rows; irow += md_length) {
GeneralMatrix incopy((const GeneralMatrix&)*this, irow, 0, md_length, cols);
GeneralMatrix inplace((GeneralMatrix&)*this, irow, 0, md_length, cols);
inplace.gemm("N", ConstGeneralMatrix(incopy), trans, m, alpha, beta);
}
if (rows > irow) {
GeneralMatrix incopy((const GeneralMatrix&)*this, irow, 0, rows - irow, cols);
GeneralMatrix inplace((GeneralMatrix&)*this, irow, 0, rows - irow, cols);
inplace.gemm("N", ConstGeneralMatrix(incopy), trans, m, alpha, beta);
}
}
ConstGeneralMatrix::ConstGeneralMatrix(const GeneralMatrix& m, int i, int j, int nrows, int ncols)
: data(m.getData(), j*m.getLD()+i, (ncols-1)*m.getLD()+nrows), rows(nrows), cols(ncols), ld(m.getLD())
{
// can check that the submatirx is fully in the matrix
}
ConstGeneralMatrix::ConstGeneralMatrix(const ConstGeneralMatrix& m, int i, int j, int nrows, int ncols)
: data(m.getData(), j*m.getLD()+i, (ncols-1)*m.getLD()+nrows), rows(nrows), cols(ncols), ld(m.getLD())
{
// can check that the submatirx is fully in the matrix
}
ConstGeneralMatrix::ConstGeneralMatrix(const GeneralMatrix& m)
: data(m.data), rows(m.rows), cols(m.cols), ld(m.ld) {}
double ConstGeneralMatrix::getNormInf() const
{
double norm = 0.0;
for (int i = 0; i < numRows(); i++) {
ConstVector rowi(data.base()+i, ld, cols);
double normi = rowi.getNorm1();
if (norm < normi)
norm = normi;
}
return norm;
}
double ConstGeneralMatrix::getNorm1() const
{
double norm = 0.0;
for (int j = 0; j < numCols(); j++) {
ConstVector colj(data.base()+ld*j, 1, rows);
double normj = colj.getNorm1();
if (norm < normj)
norm = normj;
}
return norm;
}
void ConstGeneralMatrix::multVec(double a, Vector& x, double b, const ConstVector& d) const
{
if (x.length() != rows || cols != d.length()) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for vector multiply.");
}
if (rows > 0) {
blas_int mm = rows;
blas_int nn = cols;
double alpha = b;
blas_int lda = ld;
blas_int incx = d.skip();
double beta = a;
blas_int incy = x.skip();
dgemv("N", &mm, &nn, &alpha, data.base(), &lda, d.base(), &incx,
&beta, x.base(), &incy);
}
}
void ConstGeneralMatrix::multVecTrans(double a, Vector& x, double b,
const ConstVector& d) const
{
if (x.length() != cols || rows != d.length()) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for vector multiply.");
}
if (rows > 0) {
blas_int mm = rows;
blas_int nn = cols;
double alpha = b;
blas_int lda = rows;
blas_int incx = d.skip();
double beta = a;
blas_int incy = x.skip();
dgemv("T", &mm, &nn, &alpha, data.base(), &lda, d.base(), &incx,
&beta, x.base(), &incy);
}
}
/* m = inv(this)*m */
void ConstGeneralMatrix::multInvLeft(const char* trans, int mrows, int mcols, int mld, double* d) const
{
if (rows != cols) {
throw SYLV_MES_EXCEPTION("The matrix is not square for inversion.");
}
if (cols != mrows) {
throw SYLV_MES_EXCEPTION("Wrong dimensions for matrix inverse mutliply.");
}
if (rows > 0) {
GeneralMatrix inv(*this);
lapack_int* ipiv = new lapack_int[rows];
lapack_int info;
lapack_int rows2 = rows, mcols2 = mcols, mld2 = mld;
dgetrf(&rows2, &rows2, inv.getData().base(), &rows2, ipiv, &info);
dgetrs(trans, &rows2, &mcols2, inv.base(), &rows2, ipiv, d,
&mld2, &info);
delete [] ipiv;
}
}
/* m = inv(this)*m */
void ConstGeneralMatrix::multInvLeft(GeneralMatrix& m) const
{
multInvLeft("N", m.numRows(), m.numCols(), m.getLD(), m.getData().base());
}
/* m = inv(this')*m */
void ConstGeneralMatrix::multInvLeftTrans(GeneralMatrix& m) const
{
multInvLeft("T", m.numRows(), m.numCols(), m.getLD(), m.getData().base());
}
/* d = inv(this)*d */
void ConstGeneralMatrix::multInvLeft(Vector& d) const
{
if (d.skip() != 1) {
throw SYLV_MES_EXCEPTION("Skip!=1 not implemented in ConstGeneralMatrix::multInvLeft(Vector&)");
}
multInvLeft("N", d.length(), 1, d.length(), d.base());
}
/* d = inv(this')*d */
void ConstGeneralMatrix::multInvLeftTrans(Vector& d) const
{
if (d.skip() != 1) {
throw SYLV_MES_EXCEPTION("Skip!=1 not implemented in ConstGeneralMatrix::multInvLeft(Vector&)");
}
multInvLeft("T", d.length(), 1, d.length(), d.base());
}
bool ConstGeneralMatrix::isFinite() const
{
for (int i = 0; i < numRows(); i++)
for (int j = 0; j < numCols(); j++)
if (! std::isfinite(get(i,j)))
return false;
return true;
}
bool ConstGeneralMatrix::isZero() const
{
for (int i = 0; i < numRows(); i++)
for (int j = 0; j < numCols(); j++)
if (get(i,j) != 0.0)
return false;
return true;
}
void ConstGeneralMatrix::print() const
{
printf("rows=%d, cols=%d\n",rows, cols);
for (int i = 0; i < rows; i++) {
printf("row %d:\n",i);
for (int j = 0; j < cols; j++) {
printf("%6.3g ",get(i,j));
}
printf("\n");
}
}
void SVDDecomp::construct(const GeneralMatrix& A)
{
// quick exit if empty matrix
if (minmn == 0) {
U.unit();
VT.unit();
conv = true;
return;
}
// make copy of the matrix
GeneralMatrix AA(A);
lapack_int m = AA.numRows();
lapack_int n = AA.numCols();
double* a = AA.base();
lapack_int lda = AA.getLD();
double* s = sigma.base();
double* u = U.base();
lapack_int ldu = U.getLD();
double* vt = VT.base();
lapack_int ldvt = VT.getLD();
double tmpwork;
lapack_int lwork = -1;
lapack_int info;
lapack_int* iwork = new lapack_int[8*minmn];
// query for optimal lwork
dgesdd("A", &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, &tmpwork,
&lwork, iwork, &info);
lwork = (lapack_int)tmpwork;
Vector work(lwork);
// do the decomposition
dgesdd("A", &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work.base(),
&lwork, iwork, &info);
delete [] iwork;
if (info < 0)
throw SYLV_MES_EXCEPTION("Internal error in SVDDecomp constructor");
if (info == 0)
conv = true;
}
void SVDDecomp::solve(const GeneralMatrix& B, GeneralMatrix& X) const
{
if (B.numRows() != U.numRows())
throw SYLV_MES_EXCEPTION("Incompatible number of rows ");
// reciprocal condition number for determination of zeros in the
// end of sigma
double rcond = 1e-13;
// solve U: B = U^T*B
GeneralMatrix UTB(U, "trans", B);
// determine nz=number of zeros in the end of sigma
int nz = 0;
while (nz < minmn && sigma[minmn-1-nz] < rcond*sigma[0])
nz++;
// take relevant B for sigma inversion
int m = U.numRows();
int n = VT.numCols();
GeneralMatrix Bprime(UTB, m-minmn, 0, minmn-nz, B.numCols());
// solve sigma
for (int i = 0; i < minmn-nz; i++)
Vector(i, Bprime).mult(1.0/sigma[i]);
// solve VT
X.zeros();
//- copy Bprime to right place of X
for (int i = 0; i < minmn-nz; i++)
Vector(n-minmn+i, X) = ConstVector(i, Bprime);
//- multiply with VT
X.multLeftTrans(VT);
}