dynare/matlab/Q6_plication.m

89 lines
3.5 KiB
Matlab

function [DP6,DP6inv] = Q6_plication(p)
% Computes the 6-way duplication Matrix DP6 (and its Moore-Penrose inverse)
% such that for any p-dimensional vector x:
% y=kron(kron(kron(kron(kron(x,x),x,x),x),x)=DP6*z
% where z is of dimension np=p*(p+1)*(p+2)*(p+3)*(p+4)*(p+5)/(1*2*3*4*5*6)
% and is obtained from y by removing each second and later occurence of the
% same element. This is a generalization of the Duplication matrix.
% Reference: Meijer (2005) - Matrix algebra for higher order moments.
% Linear Algebra and its Applications, 410,pp. 112-134
% =========================================================================
% INPUTS
% * p [integer] size of vector
% -------------------------------------------------------------------------
% OUTPUTS
% * DP6 [p^6 by np] 6-way duplication matrix
% * DP6inv [np by np] Moore-Penrose inverse of DP6
% -------------------------------------------------------------------------
% This function is called by
% * pruned_state_space_system.m
% -------------------------------------------------------------------------
% This function calls
% * binom_coef (embedded)
% * mue (embedded)
% * uperm
% =========================================================================
% Copyright © 2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% =========================================================================
np = p*(p+1)*(p+2)*(p+3)*(p+4)*(p+5)/(1*2*3*4*5*6);
DP6 = spalloc(p^6,np,p^6);
counti=1;
for i1=1:p
for i2=i1:p
for i3=i2:p
for i4=i3:p
for i5=i4:p
for i6=i5:p
idx = uperm([i6 i5 i4 i3 i2 i1]);
for r = 1:size(idx,1)
ii1 = idx(r,1); ii2= idx(r,2); ii3=idx(r,3); ii4=idx(r,4); ii5=idx(r,5); ii6=idx(r,6);
n = ii1 + (ii2-1)*p + (ii3-1)*p^2 + (ii4-1)*p^3 + (ii5-1)*p^4 + (ii6-1)*p^5;
m = mue(p,i6,i5,i4,i3,i2,i1);
DP6(n,m)=1;
end
counti = counti+1;
end
end
end
end
end
end
if nargout==2
DP6inv = (transpose(DP6)*DP6)\transpose(DP6);
end
function m = mue(p,i1,i2,i3,i4,i5,i6)
% Auxiliary expression, see page 122 of Meijer (2005)
m = binom_coef(p,6,1) - binom_coef(p,1,i1+1) - binom_coef(p,2,i2+1) - binom_coef(p,3,i3+1) - binom_coef(p,4,i4+1) - binom_coef(p,5,i5+1) - binom_coef(p,6,i6+1);
m = round(m);
end
function N = binom_coef(p,q,i)
% Auxiliary expression for binomial coefficients, see page 119 of Meijer (2005)
t = q; r =p+q-i;
if t==0
N=1;
else
N=1;
for h = 0:(t-1)
N = N*(r-h);
end
N=N/factorial(t);
end
end
end