dynare/matlab/generalized_cholesky.m

51 lines
1.4 KiB
Matlab

% proc gmchol(A);
% /* calculates the Gill-Murray generalized choleski decomposition */
% /* input matrix A must be non-singular and symmetric */
% /* Author: Jeff Gill. Part of the Hessian Project. */
% local i,j,k,n,sum,R,theta_j,norm_A,phi_j,delta,xi_j,gamm,E,beta_j;
function AA = generalized_cholesky(A);
n = rows(A);
R = eye(n);
E = zeros(n,n);
norm_A = max(transpose(sum(abs(A))));
gamm = max(abs(diag(A)));
delta = max([eps*norm_A;eps]);
for j = 1:n;
theta_j = 0;
for i=1:n;
somme = 0;
for k=1:i-1;
somme = somme + R(k,i)*R(k,j);
end;
R(i,j) = (A(i,j) - somme)/R(i,i);
if (A(i,j) -somme) > theta_j;
theta_j = A(i,j) - somme;
end;
if i > j;
R(i,j) = 0;
end;
end;
somme = 0;
for k=1:j-1;
somme = somme + R(k,j)^2;
end;
phi_j = A(j,j) - somme;
if j+1 <= n;
xi_j = max(abs(A((j+1):n,j)));
else;
xi_j = abs(A(n,j));
end;
beta_j = sqrt(max([gamm ; (xi_j/n) ; eps]));
if all(delta >= [abs(phi_j);((theta_j^2)/(beta_j^2))]);
E(j,j) = delta - phi_j;
elseif all(abs(phi_j) >= [((delta^2)/(beta_j^2));delta]);
E(j,j) = abs(phi_j) - phi_j;
elseif all(((theta_j^2)/(beta_j^2)) >= [delta;abs(phi_j)]);
E(j,j) = ((theta_j^2)/(beta_j^2)) - phi_j;
end;
R(j,j) = sqrt(A(j,j) - somme + E(j,j));
end;
AA = transpose(R)*R;