dynare/matlab/discretionary_policy/discretionary_policy_engine.m

342 lines
9.6 KiB
Matlab
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

function [H,G,retcode]=discretionary_policy_engine(AAlag,AA0,AAlead,BB,bigw,instr_id,beta,solve_maxit,discretion_tol,qz_criterium,H00,verbose)
% Solves the discretionary problem for a model of the form:
%
% Loss=E_0 sum_{t=0}^{\infty} beta^t [y_t'*W*y+x_t'*Q*x_t]
% subject to
% AAlag*yy_{t-1}+AA0*yy_t+AAlead*yy_{t+1}+BB*e=0
%
% with W the weight on the variables in vector y_t.
%
% The solution takes the form
% y_t=H*y_{t-1}+G*e_t
% where H=[H1;F1] and G=[H2;F2].
%
% We use the Dennis (2007, Macroeconomic Dynamics) algorithm and so we need
% to re-write the model in the form
% A0*y_t=A1*y_{t-1}+A2*y_{t+1}+A3*x_t+A4*x_{t+1}+A5*e_t, with W the
% weight on the y_t vector and Q the weight on the x_t vector of
% instruments.
%
% Inputs:
% AAlag [double] matrix of coefficients on lagged
% variables
% AA0 [double] matrix of coefficients on
% contemporaneous variables
% AAlead [double] matrix of coefficients on
% leaded variables
% BB [double] matrix of coefficients on
% shocks
% bigw [double] matrix of coefficients on variables in
% loss/objective function; stacks [W and Q]
% instr_id [double] location vector of the instruments in the yy_t vector.
% beta [scalar] planner discount factor
% solve_maxit [scalar] maximum number of iterations
% discretion_tol [scalar] convergence criterion for solution
% qz_criterium [scalar] tolerance for QZ decomposition
% H00
% verbose [scalar] dummy to control verbosity
%
% Outputs:
% H [double] (endo_nbr*endo_nbr) solution matrix for endogenous
% variables, stacks [H1 and H1]
% G [double] (endo_nbr*exo_nbr) solution matrix for shocks, stacks [H2 and F2]
%
% retcode [scalar] return code
%
% Algorithm:
% Dennis, Richard (2007): Optimal policy in rational expectations models: new solution algorithms,
% Macroeconomic Dynamics, 11, 31–55.
% Copyright © 2007-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<12
verbose=0;
if nargin<11
H00=[];
if nargin<10
qz_criterium=1.000001;
if nargin<9
discretion_tol=sqrt(eps);
if nargin<8
solve_maxit=3000;
if nargin<7
beta=.99;
if nargin<6
error([mfilename,':: Insufficient number of input arguments'])
elseif nargin>12
error([mfilename,':: Number of input arguments cannot exceed 12'])
end
end
end
end
end
end
end
[A0,A1,A2,A3,A4,A5,W,Q,endo_nbr,exo_nbr,aux,endo_augm_id]=GetDennisMatrices(AAlag,AA0,AAlead,BB,bigw,instr_id);
% aux is a logical index of the instruments which appear with lags in the
% model. Their location in the state vector is instr_id(aux);
% endo_augm_id is index (not logical) of locations of the augmented vector
% of non-instrumental variables
AuxiliaryVariables_nbr=sum(aux);
H0=zeros(endo_nbr+AuxiliaryVariables_nbr);
if ~isempty(H00)
H0(1:endo_nbr,1:endo_nbr)=H00;
clear H00
end
H10=H0(endo_augm_id,endo_augm_id);
F10=H0(instr_id,endo_augm_id);
iter=0;
H1=H10;
F1=F10;
%solve equations (20) and (22) via fixed point iteration
while 1
iter=iter+1;
P=SylvesterDoubling(W+beta*F1'*Q*F1,beta*H1',H1,discretion_tol,solve_maxit);
if any(any(isnan(P))) || any(any(isinf(P)))
P=SylvesterHessenbergSchur(W+beta*F1'*Q*F1,beta*H1',H1);
if any(any(isnan(P))) || any(any(isinf(P)))
retcode=2;
return
end
end
D=A0-A2*H1-A4*F1; %equation (20)
Dinv=inv(D);
A3DPD=A3'*Dinv'*P*Dinv;
F1=-(Q+A3DPD*A3)\(A3DPD*A1); %component of (26)
H1=Dinv*(A1+A3*F1); %component of (27)
[rcode,NQ]=CheckConvergence([H1;F1]-[H10;F10],iter,solve_maxit,discretion_tol);
if rcode
break
else
if verbose
disp(NQ)
end
end
H10=H1;
F10=F1;
end
%check if successful
retcode = 0;
switch rcode
case 3 % nan
retcode=63;
retcode(2)=10000;
if verbose
disp([mfilename,':: NaN elements in the solution'])
end
case 2% maxiter
retcode = 61;
if verbose
disp([mfilename,':: Maximum Number of Iterations reached'])
end
case 1
BadEig=max(abs(eig(H1)))>qz_criterium;
if BadEig
retcode=62;
retcode(2)=100*max(abs(eig(H1)));
if verbose
disp([mfilename,':: Some eigenvalues greater than qz_criterium, Model potentially unstable'])
end
end
end
if retcode(1)
H=[];
G=[];
else
F2=-(Q+A3DPD*A3)\(A3DPD*A5); %equation (29)
H2=Dinv*(A5+A3*F2); %equation (31)
H=zeros(endo_nbr+AuxiliaryVariables_nbr);
G=zeros(endo_nbr+AuxiliaryVariables_nbr,exo_nbr);
H(endo_augm_id,endo_augm_id)=H1;
H(instr_id,endo_augm_id)=F1;
G(endo_augm_id,:)=H2;
G(instr_id,:)=F2;
% Account for auxilliary variables
H(:,instr_id(aux))=H(:,end-(AuxiliaryVariables_nbr-1:-1:0));
H=H(1:endo_nbr,1:endo_nbr);
G=G(1:endo_nbr,:);
end
end
function [rcode,NQ]=CheckConvergence(Q,iter,MaxIter,crit)
NQ=max(max(abs(Q)));% norm(Q); seems too costly
if isnan(NQ)
rcode=3;
elseif iter>MaxIter
rcode=2;
elseif NQ<crit
rcode=1;
else
rcode=0;
end
end
function [A00,A11,A22,A33,A44,A55,WW,Q,endo_nbr,exo_nbr,aux,endo_augm_id]=GetDennisMatrices(AAlag,AA0,AAlead,BB,bigw,instr_id)
%get the matrices to use the Dennis (2007) algorithm
[eq_nbr,endo_nbr]=size(AAlag);
exo_nbr=size(BB,2);
y=setdiff(1:endo_nbr,instr_id);
instr_nbr=numel(instr_id);
A0=AA0(:,y);
A1=-AAlag(:,y);
A2=-AAlead(:,y);
A3=-AA0(:,instr_id);
A4=-AAlead(:,instr_id);
A5=-BB;
W=bigw(y,y);
Q=bigw(instr_id,instr_id);
% Adjust for possible lags in instruments by creating auxiliary equations
A6=-AAlag(:,instr_id);
aux=any(A6);
AuxiliaryVariables_nbr=sum(aux);
ny=eq_nbr;
m=eq_nbr+AuxiliaryVariables_nbr;
A00=zeros(m);A00(1:ny,1:ny)=A0;A00(ny+1:end,ny+1:end)=eye(AuxiliaryVariables_nbr);
A11=zeros(m);A11(1:ny,1:ny)=A1;A11(1:ny,ny+1:end)=A6(:,aux);
A22=zeros(m);A22(1:ny,1:ny)=A2;
A33=zeros(m,instr_nbr);A33(1:ny,1:end)=A3;A33(ny+1:end,aux)=eye(AuxiliaryVariables_nbr);
A44=zeros(m,instr_nbr);A44(1:ny,1:end)=A4;
A55=zeros(m,exo_nbr);A55(1:ny,1:end)=A5;
WW=zeros(m);WW(1:ny,1:ny)=W;
endo_augm_id=setdiff(1:endo_nbr+AuxiliaryVariables_nbr,instr_id);
end
function v= SylvesterDoubling (d,g,h,tol,maxit)
% DOUBLES Solves a Sylvester equation using doubling
%
% [v,info] = doubles (g,d,h,tol,maxit) uses a doubling algorithm
% to solve the Sylvester equation v = d + g v h
v = d;
for i =1:maxit
vadd = g*v*h;
v = v+vadd;
if norm (vadd,1) <= (tol*norm(v,1))
break
end
g = g*g;
h = h*h;
end
end
function v = SylvesterHessenbergSchur(d,g,h)
%
% DSYLHS Solves a discrete time sylvester equation using the
% Hessenberg-Schur algorithm
%
% v = DSYLHS(g,d,h) computes the matrix v that satisfies the
% discrete time sylvester equation
%
% v = d + g'vh
if size(g,1) >= size(h,1)
[u,gbarp] = hess(g');
[t,hbar] = schur(h);
[vbar] = sylvest_private(gbarp,u'*d*t,hbar,1e-15);
v = u*vbar*t';
else
[u,gbar] = schur(g);
[t,hbarp] = hess(h');
[vbar] = sylvest_private(hbarp,t'*d'*u,gbar,1e-15);
v = u*vbar'*t';
end
end
function v = sylvest_private(g,d,h,tol)
%
% SYLVEST Solves a Sylvester equation
%
% solves the Sylvester equation
% v = d + g v h
% for v where both g and h must be upper block triangular.
% The output info is zero on a successful return.
% The input tol indicates when an element of g or h should be considered
% zero.
[m,n] = size(d);
v = zeros(m,n);
w = eye(m);
i = 1;
temp = [];
%First handle the i = 1 case outside the loop
if i< n
if abs(h(i+1,i)) < tol
v(:,i)= (w - g*h(i,i))\d(:,i);
i = i+1;
else
A = [w-g*h(i,i) (-g*h(i+1,i));...
-g*h(i,i+1) w-g*h(i+1,i+1)];
C = [d(:,i); d(:,i+1)];
X = A\C;
v(:,i) = X(1:m,:);
v(:,i+1) = X(m+1:2*m, :);
i = i+2;
end
end
%Handle the rest of the matrix with the possible exception of i=n
while i<n
b= i-1;
temp = [temp g*v(:,size(temp,2)+1:b)]; %#ok<AGROW>
if abs(h(i+1,i)) < tol
v(:,i) = (w - g*h(i,i))\(d(:,i) + temp*h(1:b,i));
i = i+1;
else
A = [w - g*h(i,i) (-g*h(i+1,i)); ...
-g*h(i,i+1) w - g*h(i+1,i+1)];
C = [d(:,i) + temp*h(1:b,i); ...
d(:,i+1) + temp*h(1:b,i+1)];
X = A\C;
v(:,i) = X(1:m,:);
v(:,i+1) = X(m+1:2*m, :);
i = i+2;
end
end
%Handle the i = n case if i=n was not in a 2-2 block
if i==n
b = i-1;
temp = [temp g*v(:,size(temp,2)+1:b)];
v(:,i) = (w-g*h(i,i))\(d(:,i) + temp*h(1:b,i));
end
end