dynare/nonlinear-filters/src/online_auxiliary_filter.m

375 lines
17 KiB
Matlab
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

function [pmean, pmode, pmedian, pstdev, p025, p975, covariance] = online_auxiliary_filter(xparam1, DynareDataset, DynareOptions, Model, EstimatedParameters, BayesInfo, DynareResults)
% Liu & West particle filter = auxiliary particle filter including Liu & West filter on parameters.
%
% INPUTS
% - xparam1 [double] n×1 vector, Initial condition for the estimated parameters.
% - DynareDataset [dseries] Sample used for estimation.
% - dataset_info [struct] Description of the sample.
% - DynareOptions [struct] Option values (options_).
% - Model [struct] Description of the model (M_).
% - EstimatedParameters [struct] Description of the estimated parameters (estim_params_).
% - BayesInfo [struct] Prior definition (bayestopt_).
% - DynareResults [struct] Results (oo_).
%
% OUTPUTS
% - pmean [double] n×1 vector, mean of the particles at the end of the sample (for the parameters).
% - pmode [double] n×1 vector, mode of the particles at the end of the sample (for the parameters).
% - pmedian [double] n×1 vector, median of the particles at the end of the sample (for the parameters).
% - pstdev [double] n×1 vector, st. dev. of the particles at the end of the sample (for the parameters).
% - p025 [double] n×1 vector, 2.5 percent of the particles are below p025(i) for i=1,…,n.
% - p975 [double] n×1 vector, 97.5 percent of the particles are below p975(i) for i=1,…,n.
% - covariance [double] n×n matrix, covariance of the particles at the end of the sample.
% Copyright (C) 2013-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Set seed for randn().
set_dynare_seed('default');
pruning = DynareOptions.particle.pruning;
second_resample = DynareOptions.particle.resampling.status.systematic;
variance_update = true;
bounds = prior_bounds(BayesInfo, DynareOptions.prior_trunc); % Reset bounds as lb and ub must only be operational during mode-finding
% initialization of state particles
[~, Model, DynareOptions, DynareResults, ReducedForm] = solve_model_for_online_filter(true, xparam1, DynareDataset, DynareOptions, Model, EstimatedParameters, BayesInfo, bounds, DynareResults);
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_particles = DynareOptions.particle.number_of_particles;
number_of_parameters = size(xparam1,1);
Y = DynareDataset.data;
sample_size = size(Y,1);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
liu_west_delta = DynareOptions.particle.liu_west_delta;
% Get initial conditions for the state particles
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)';
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
if DynareOptions.order<3 && pruning
StateVectors_ = StateVectors;
end
% parameters for the Liu & West filter
small_a = (3*liu_west_delta-1)/(2*liu_west_delta);
b_square = 1-small_a*small_a;
% Initialization of parameter particles
xparam = zeros(number_of_parameters,number_of_particles);
prior_draw(BayesInfo,DynareOptions.prior_trunc);
for i=1:number_of_particles
info = 12042009;
while info
candidate = prior_draw()';
[info, Model, DynareOptions, DynareResults] = solve_model_for_online_filter(false, xparam1, DynareDataset, DynareOptions, Model, EstimatedParameters, BayesInfo, bounds, DynareResults);
if ~info
xparam(:,i) = candidate(:);
end
end
end
% Initialization of the weights of particles.
weights = ones(1,number_of_particles)/number_of_particles;
% Initialization of the likelihood.
const_lik = log(2*pi)*number_of_observed_variables;
mean_xparam = zeros(number_of_parameters,sample_size);
mode_xparam = zeros(number_of_parameters,sample_size);
median_xparam = zeros(number_of_parameters,sample_size);
std_xparam = zeros(number_of_parameters,sample_size);
lb95_xparam = zeros(number_of_parameters,sample_size);
ub95_xparam = zeros(number_of_parameters,sample_size);
%% The Online filter
for t=1:sample_size
if t>1
fprintf('\nSubsample with %s first observations.\n\n', int2str(t))
else
fprintf('\nSubsample with only the first observation.\n\n', int2str(t))
end
% Moments of parameters particles distribution
m_bar = xparam*(weights');
temp = bsxfun(@minus,xparam,m_bar);
sigma_bar = (bsxfun(@times,weights,temp))*(temp');
if variance_update
chol_sigma_bar = chol(b_square*sigma_bar)';
end
% Prediction (without shocks)
fore_xparam = bsxfun(@plus,(1-small_a).*m_bar,small_a.*xparam);
tau_tilde = zeros(1,number_of_particles);
for i=1:number_of_particles
% model resolution
[info, Model, DynareOptions, DynareResults, ReducedForm] = ...
solve_model_for_online_filter(false, fore_xparam(:,i), DynareDataset, DynareOptions, Model, EstimatedParameters, BayesInfo, bounds, DynareResults);
if ~info
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
% Set local state space model (second-order approximation).
if ReducedForm.use_k_order_solver
dr = ReducedForm.dr;
else
constant = ReducedForm.constant;
% Set local state space model (first-order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second-order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
end
% particle likelihood contribution
yhat = bsxfun(@minus, StateVectors(:,i), state_variables_steady_state);
if ReducedForm.use_k_order_solver
tmp = local_state_space_iteration_k(yhat, zeros(number_of_structural_innovations, 1), dr, Model, DynareOptions);
else
if pruning
yhat_ = bsxfun(@minus,StateVectors_(:,i),state_variables_steady_state);
[tmp, ~] = local_state_space_iteration_2(yhat, zeros(number_of_structural_innovations, 1), ghx, ghu, constant, ghxx, ghuu, ghxu, yhat_, steadystate, DynareOptions.threads.local_state_space_iteration_2);
else
tmp = local_state_space_iteration_2(yhat, zeros(number_of_structural_innovations, 1), ghx, ghu, constant, ghxx, ghuu, ghxu, DynareOptions.threads.local_state_space_iteration_2);
end
end
PredictionError = bsxfun(@minus,Y(t,:)', tmp(mf1,:));
% Replace Gaussian density with a Student density with 3 degrees of freedom for fat tails.
z = sum(PredictionError.*(ReducedForm.H\PredictionError), 1) ;
tau_tilde(i) = weights(i).*(tpdf(z, 3*ones(size(z)))+1e-99) ;
end
end
% particles selection
tau_tilde = tau_tilde/sum(tau_tilde);
indx = resample(0, tau_tilde', DynareOptions.particle);
StateVectors = StateVectors(:,indx);
xparam = fore_xparam(:,indx);
if DynareOptions.order>=3 && pruning
StateVectors_ = StateVectors_(:,indx);
end
w_stage1 = weights(indx)./tau_tilde(indx);
% draw in the new distributions
wtilde = zeros(1, number_of_particles);
for i=1:number_of_particles
info = 12042009;
while info
candidate = xparam(:,i) + chol_sigma_bar*randn(number_of_parameters, 1);
if all(candidate>=bounds.lb) && all(candidate<=bounds.ub)
% model resolution for new parameters particles
[info, Model, DynareOptions, DynareResults, ReducedForm] = ...
solve_model_for_online_filter(false, candidate, DynareDataset, DynareOptions, Model, EstimatedParameters, BayesInfo, bounds, DynareResults) ;
if ~info
xparam(:,i) = candidate ;
steadystate = ReducedForm.steadystate;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
% Set local state space model (second order approximation).
if ReducedForm.use_k_order_solver
dr = ReducedForm.dr;
else
constant = ReducedForm.constant;
% Set local state space model (first-order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second-order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
end
% Get covariance matrices and structural shocks
epsilon = chol(ReducedForm.Q)'*randn(number_of_structural_innovations, 1);
% compute particles likelihood contribution
yhat = bsxfun(@minus,StateVectors(:,i), state_variables_steady_state);
if ReducedForm.use_k_order_solver
tmp = local_state_space_iteration_k(yhat, epsilon, dr, Model, DynareOptions);
else
if pruning
yhat_ = bsxfun(@minus,StateVectors_(:,i), state_variables_steady_state);
[tmp, tmp_] = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, yhat_, steadystate, DynareOptions.threads.local_state_space_iteration_2);
StateVectors_(:,i) = tmp_(mf0,:);
else
tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, DynareOptions.threads.local_state_space_iteration_2);
end
end
StateVectors(:,i) = tmp(mf0,:);
PredictionError = bsxfun(@minus,Y(t,:)', tmp(mf1,:));
wtilde(i) = w_stage1(i)*exp(-.5*(const_lik+log(det(ReducedForm.H))+sum(PredictionError.*(ReducedForm.H\PredictionError), 1)));
end
end
end
end
% normalization
weights = wtilde/sum(wtilde);
if variance_update && (neff(weights)<DynareOptions.particle.resampling.threshold*sample_size)
variance_update = false;
end
% final resampling (not advised)
if second_resample
[~, idmode] = max(weights);
mode_xparam(:,t) = xparam(:,idmode);
indx = resample(0, weights,DynareOptions.particle);
StateVectors = StateVectors(:,indx) ;
if pruning
StateVectors_ = StateVectors_(:,indx);
end
xparam = xparam(:,indx);
weights = ones(1, number_of_particles)/number_of_particles;
mean_xparam(:,t) = mean(xparam, 2);
mat_var_cov = bsxfun(@minus, xparam, mean_xparam(:,t));
mat_var_cov = (mat_var_cov*mat_var_cov')/(number_of_particles-1);
std_xparam(:,t) = sqrt(diag(mat_var_cov));
for i=1:number_of_parameters
temp = sortrows(xparam(i,:)');
lb95_xparam(i,t) = temp(0.025*number_of_particles);
median_xparam(i,t) = temp(0.5*number_of_particles);
ub95_xparam(i,t) = temp(0.975*number_of_particles);
end
end
if second_resample
[~, idmode] = max(weights);
mode_xparam(:,t) = xparam(:,idmode);
mean_xparam(:,t) = xparam*(weights');
mat_var_cov = bsxfun(@minus, xparam,mean_xparam(:,t));
mat_var_cov = mat_var_cov*(bsxfun(@times, mat_var_cov, weights)');
std_xparam(:,t) = sqrt(diag(mat_var_cov));
for i=1:number_of_parameters
temp = sortrows([xparam(i,:)' weights'], 1);
cumulated_weights = cumsum(temp(:,2));
pass1 = false;
pass2 = false;
pass3 = false;
for j=1:number_of_particles
if ~pass1 && cumulated_weights(j)>=0.025
lb95_xparam(i,t) = temp(j,1);
pass1 = true;
end
if ~pass2 && cumulated_weights(j)>=0.5
median_xparam(i,t) = temp(j,1);
pass2 = true;
end
if ~pass3 && cumulated_weights(j)>=0.975
ub95_xparam(i,t) = temp(j,1);
pass3 = true;
end
end
end
end
str = sprintf(' Lower Bound (95%%) \t Mean \t\t\t Upper Bound (95%%)');
for l=1:size(xparam,1)
str = sprintf('%s\n %5.4f \t\t %7.5f \t\t %5.4f', str, lb95_xparam(l,t), mean_xparam(l,t), ub95_xparam(l,t));
end
disp([str])
disp('')
end
pmean = xparam(:,sample_size);
pmode = mode_xparam(:,sample_size);
pstdev = std_xparam(:,sample_size) ;
p025 = lb95_xparam(:,sample_size) ;
p975 = ub95_xparam(:,sample_size) ;
pmedian = median_xparam(:,sample_size) ;
covariance = mat_var_cov;
%% Plot parameters trajectory
TeX = DynareOptions.TeX;
nr = ceil(sqrt(number_of_parameters)) ;
nc = floor(sqrt(number_of_parameters));
nbplt = 1 ;
if TeX
fidTeX = fopen([Model.fname '_param_traj.tex'],'w');
fprintf(fidTeX,'%% TeX eps-loader file generated by online_auxiliary_filter.m (Dynare).\n');
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
end
for plt = 1:nbplt
if TeX
NAMES = [];
TeXNAMES = [];
end
hh = dyn_figure(DynareOptions.nodisplay,'Name','Parameters Trajectories');
for k=1:length(pmean)
subplot(nr,nc,k)
[name,texname] = get_the_name(k,TeX,Model,EstimatedParameters,DynareOptions);
% Draw the surface for an interval containing 95% of the particles.
shade(1:sample_size, ub95_xparam(k,:)', 1:sample_size, lb95_xparam(k,:)', 'FillType',[1 2], 'LineStyle', 'none', 'Marker', 'none')
hold on
% Draw the mean of particles.
plot(1:sample_size, mean_xparam(k,:), '-k', 'linewidth', 2)
if TeX
title(texname,'interpreter','latex')
else
title(name,'interpreter','none')
end
hold off
axis tight
drawnow
end
dyn_saveas(hh, [Model.fname '_param_traj' int2str(plt)], DynareOptions.nodisplay, DynareOptions.graph_format);
if TeX
% TeX eps loader file
fprintf(fidTeX,'\\begin{figure}[H]\n');
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[scale=0.5]{%s_ParamTraj%s}\n',Model.fname,int2str(plt));
fprintf(fidTeX,'\\caption{Parameters trajectories.}');
fprintf(fidTeX,'\\label{Fig:ParametersPlots:%s}\n',int2str(plt));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,' \n');
end
end
% Plot Parameter Densities
number_of_grid_points = 2^9; % 2^9 = 512 !... Must be a power of two.
bandwidth = 0; % Rule of thumb optimal bandwidth parameter.
kernel_function = 'gaussian'; % Gaussian kernel for Fast Fourier Transform approximation.
for plt = 1:nbplt
if TeX
NAMES = [];
TeXNAMES = [];
end
hh = dyn_figure(DynareOptions.nodisplay,'Name','Parameters Densities');
for k=1:length(pmean)
subplot(nr,nc,k)
[name,texname] = get_the_name(k,TeX,Model,EstimatedParameters,DynareOptions);
optimal_bandwidth = mh_optimal_bandwidth(xparam(k,:)',number_of_particles,bandwidth,kernel_function);
[density(:,1),density(:,2)] = kernel_density_estimate(xparam(k,:)', number_of_grid_points, ...
number_of_particles, optimal_bandwidth, kernel_function);
plot(density(:,1), density(:,2));
hold on
if TeX
title(texname,'interpreter','latex')
else
title(name,'interpreter','none')
end
hold off
axis tight
drawnow
end
dyn_saveas(hh,[ Model.fname '_param_density' int2str(plt) ],DynareOptions.nodisplay,DynareOptions.graph_format);
if TeX && any(strcmp('eps',cellstr(DynareOptions.graph_format)))
% TeX eps loader file
fprintf(fidTeX, '\\begin{figure}[H]\n');
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%_param_density%s}\n',min(k/nc,1),M_.fname,int2str(plt));
fprintf(fidTeX,'\\caption{Parameter densities based on the Liu/West particle filter.}');
fprintf(fidTeX,'\\label{Fig:ParameterDensities:%s}\n',int2str(plt));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,' \n');
end
end