dynare/matlab/swz/cstz/fn_a0freefun.m

40 lines
1.6 KiB
Matlab

function of = fn_a0freefun(b,Ui,nvar,n0,fss,H0inv)
% of = fn_a0freefun(b,Ui,nvar,n0,fss,H0inv)
%
% Negative logPosterior function for squeesed A0 free parameters, which are b's in the WZ notation
% Note: columns correspond to equations
%
% b: sum(n0)-by-1 vector of A0 free parameters
% Ui: nvar-by-1 cell. In each cell, nvar-by-qi orthonormal basis for the null of the ith
% equation contemporaneous restriction matrix where qi is the number of free parameters.
% With this transformation, we have ai = Ui*bi or Ui'*ai = bi where ai is a vector
% of total original parameters and bi is a vector of free parameters. When no
% restrictions are imposed, we have Ui = I. There must be at least one free
% parameter left for the ith equation.
% nvar: number of endogeous variables
% n0: nvar-by-1, ith element represents the number of free A0 parameters in ith equation
% fss: nSample-lags (plus ndobs if dummies are included)
% H0inv: cell(nvar,1). In each cell, posterior inverse of covariance inv(H0) for the ith equation,
% resembling old SpH in the exponent term in posterior of A0, but not divided by T yet.
%----------------
% of: objective function (negative logPosterior)
%
% Tao Zha, February 2000
b=b(:); n0=n0(:);
A0 = zeros(nvar);
n0cum = [0;cumsum(n0)];
tra = 0.0;
for kj = 1:nvar
bj = b(n0cum(kj)+1:n0cum(kj+1));
A0(:,kj) = Ui{kj}*bj;
tra = tra + 0.5*bj'*H0inv{kj}*bj; % negative exponential term
end
[A0l,A0u] = lu(A0);
ada = -fss*sum(log(abs(diag(A0u)))); % negative log determinant of A0 raised to power T
of = ada + tra;