dynare/matlab/estimation/non_linear_dsge_likelihood.m

252 lines
11 KiB
Matlab
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

function [fval,info,exit_flag,DLIK,Hess,ys,trend_coeff,M_,options_,bayestopt_,dr] = non_linear_dsge_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,dr, endo_steady_state, exo_steady_state, exo_det_steady_state)
% [fval,info,exit_flag,DLIK,Hess,ys,trend_coeff,M_,options_,bayestopt_,dr] = non_linear_dsge_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,dr, endo_steady_state, exo_steady_state, exo_det_steady_state)
% Evaluates the posterior kernel of a dsge model using a non linear filter.
%
% INPUTS
% - xparam1 [double] n×1 vector, estimated parameters.
% - dataset_ [struct] Matlab's structure containing the dataset
% - dataset_info [struct] Matlab's structure describing the dataset
% - options_ [struct] Matlab's structure describing the options
% - M_ [struct] Matlab's structure describing the M_
% - estim_params_ [struct] Matlab's structure describing the estimated_parameters
% - bayestopt_ [struct] Matlab's structure describing the priors
% - BoundsInfo [struct] Matlab's structure specifying the bounds on the paramater values
% - dr [structure] Reduced form model.
% - endo_steady_state [vector] steady state value for endogenous variables
% - exo_steady_state [vector] steady state value for exogenous variables
% - exo_det_steady_state [vector] steady state value for exogenous deterministic variables
%
% OUTPUTS
% - fval [double] scalar, value of the likelihood or posterior kernel.
% - info [integer] 4×1 vector, informations resolution of the model and evaluation of the likelihood.
% - exit_flag [integer] scalar, equal to 1 (no issues when evaluating the likelihood) or 0 (not able to evaluate the likelihood).
% - DLIK [double] Empty array.
% - Hess [double] Empty array.
% - ys [double] Empty array.
% - trend_coeff [double] Empty array.
% - M_ [struct] Updated M_ structure described in INPUTS section.
% - options_ [struct] Updated options_ structure described in INPUTS section.
% - bayestopt_ [struct] See INPUTS section.
% - dr [struct] decision rule structure described in INPUTS section.
% Copyright © 2010-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Initialization of the returned arguments.
fval = [];
ys = [];
trend_coeff = [];
exit_flag = 1;
DLIK = [];
Hess = [];
% Ensure that xparam1 is a column vector.
% (Don't do the transformation if xparam1 is empty, otherwise it would become a
% 0×1 matrix, which create issues with older MATLABs when comparing with [] in
% check_bounds_and_definiteness_estimation)
if ~isempty(xparam1)
xparam1 = xparam1(:);
end
% Issue an error if loglinear option is used.
if options_.loglinear
error('non_linear_dsge_likelihood: It is not possible to use a non linear filter with the option loglinear!')
end
%------------------------------------------------------------------------------
% 1. Get the structural parameters & define penalties
%------------------------------------------------------------------------------
M_ = set_all_parameters(xparam1,estim_params_,M_);
[fval,info,exit_flag,Q,H]=check_bounds_and_definiteness_estimation(xparam1, M_, estim_params_, BoundsInfo);
if info(1)
return
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
% Linearize the model around the deterministic steadystate and extract the matrices of the state equation (T and R).
[dr, info, M_.params] = resol(0, M_, options_, dr , endo_steady_state, exo_steady_state, exo_det_steady_state);
if info(1)
if info(1) == 3 || info(1) == 4 || info(1) == 5 || info(1)==6 ||info(1) == 19 || ...
info(1) == 20 || info(1) == 21 || info(1) == 23 || info(1) == 26 || ...
info(1) == 81 || info(1) == 84 || info(1) == 85
%meaningful second entry of output that can be used
fval = Inf;
info(4) = info(2);
exit_flag = 0;
return
else
fval = Inf;
info(4) = 0.1;
exit_flag = 0;
return
end
end
% Define a vector of indices for the observed variables. Is this really usefull?...
bayestopt_.mf = bayestopt_.mf1;
% Get needed informations for kalman filter routines.
start = options_.presample+1;
Y = transpose(dataset_.data);
%------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
%------------------------------------------------------------------------------
mf0 = bayestopt_.mf0;
mf1 = bayestopt_.mf1;
restrict_variables_idx = dr.restrict_var_list;
state_variables_idx = restrict_variables_idx(mf0);
number_of_state_variables = length(mf0);
ReducedForm.steadystate = dr.ys(dr.order_var(restrict_variables_idx));
ReducedForm.constant = ReducedForm.steadystate + .5*dr.ghs2(restrict_variables_idx);
ReducedForm.state_variables_steady_state = dr.ys(dr.order_var(state_variables_idx));
ReducedForm.Q = Q;
ReducedForm.H = H;
ReducedForm.mf0 = mf0;
ReducedForm.mf1 = mf1;
if options_.order>3
ReducedForm.use_k_order_solver = true;
ReducedForm.dr = dr;
ReducedForm.udr = folded_to_unfolded_dr(dr, M_, options_);
if pruning
error('Pruning is not available for orders > 3');
end
else
ReducedForm.use_k_order_solver = false;
ReducedForm.ghx = dr.ghx(restrict_variables_idx,:);
ReducedForm.ghu = dr.ghu(restrict_variables_idx,:);
ReducedForm.ghxx = dr.ghxx(restrict_variables_idx,:);
ReducedForm.ghuu = dr.ghuu(restrict_variables_idx,:);
ReducedForm.ghxu = dr.ghxu(restrict_variables_idx,:);
ReducedForm.ghs2 = dr.ghs2(restrict_variables_idx,:);
if options_.order==3
ReducedForm.ghxxx = dr.ghxxx(restrict_variables_idx,:);
ReducedForm.ghuuu = dr.ghuuu(restrict_variables_idx,:);
ReducedForm.ghxxu = dr.ghxxu(restrict_variables_idx,:);
ReducedForm.ghxuu = dr.ghxuu(restrict_variables_idx,:);
ReducedForm.ghxss = dr.ghxss(restrict_variables_idx,:);
ReducedForm.ghuss = dr.ghuss(restrict_variables_idx,:);
end
end
% Set initial condition.
switch options_.particle.initialization
case 1% Initial state vector covariance is the ergodic variance associated to the first order Taylor-approximation of the model.
StateVectorMean = ReducedForm.constant(mf0);
[A,B] = kalman_transition_matrix(dr,dr.restrict_var_list,dr.restrict_columns);
StateVectorVariance = lyapunov_symm(A, B*Q*B', options_.lyapunov_fixed_point_tol, ...
options_.qz_criterium, options_.lyapunov_complex_threshold, [], options_.debug);
StateVectorVariance = StateVectorVariance(mf0,mf0);
case 2% Initial state vector covariance is a monte-carlo based estimate of the ergodic variance (consistent with a k-order Taylor-approximation of the model).
StateVectorMean = ReducedForm.constant(mf0);
old_DynareOptionsperiods = options_.periods;
options_.periods = 5000;
old_DynareOptionspruning = options_.pruning;
options_.pruning = options_.particle.pruning;
y_ = simult(endo_steady_state, dr,M_,options_);
y_ = y_(dr.order_var(state_variables_idx),2001:5000); %state_variables_idx is in dr-order while simult_ is in declaration order
if any(any(isnan(y_))) || any(any(isinf(y_))) && ~ options_.pruning
fval = Inf;
info(1) = 202;
info(4) = 0.1;
exit_flag = 0;
return;
end
StateVectorVariance = cov(y_');
options_.periods = old_DynareOptionsperiods;
options_.pruning = old_DynareOptionspruning;
clear('old_DynareOptionsperiods','y_');
case 3% Initial state vector covariance is a diagonal matrix (to be used
% if model has stochastic trends).
StateVectorMean = ReducedForm.constant(mf0);
StateVectorVariance = options_.particle.initial_state_prior_std*eye(number_of_state_variables);
otherwise
error('Unknown initialization option!')
end
ReducedForm.StateVectorMean = StateVectorMean;
ReducedForm.StateVectorVariance = StateVectorVariance;
[~, flag] = chol(ReducedForm.StateVectorVariance);%reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
if flag
fval = Inf;
info(1) = 201;
info(4) = 0.1;
exit_flag = 0;
return;
end
%------------------------------------------------------------------------------
% 4. Likelihood evaluation
%------------------------------------------------------------------------------
options_.warning_for_steadystate = 0;
[s1,s2] = get_dynare_random_generator_state();
LIK = feval(options_.particle.algorithm, ReducedForm, Y, start, options_.particle, options_.threads, options_, M_);
set_dynare_random_generator_state(s1,s2);
if imag(LIK)
fval = Inf;
info(1) = 46;
info(4) = 0.1;
exit_flag = 0;
return
elseif isnan(LIK)
fval = Inf;
info(1) = 45;
info(4) = 0.1;
exit_flag = 0;
return
else
likelihood = LIK;
end
options_.warning_for_steadystate = 1;
% ------------------------------------------------------------------------------
% Adds prior if necessary
% ------------------------------------------------------------------------------
lnprior = priordens(xparam1(:),bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
fval = (likelihood-lnprior);
if isnan(fval)
fval = Inf;
info(1) = 47;
info(4) = 0.1;
exit_flag = 0;
return
end
if ~isreal(fval)
fval = Inf;
info(1) = 48;
info(4) = 0.1;
exit_flag = 0;
return
end
if isinf(LIK)
fval = Inf;
info(1) = 50;
info(4) = 0.1;
exit_flag = 0;
return
end