dynare/matlab/estimation/dsge_var_likelihood.m

329 lines
14 KiB
Matlab
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

function [fval,info,exit_flag,grad,hess,SteadyState,trend_coeff,PHI_tilde,SIGMA_u_tilde,iXX,prior] = dsge_var_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,dr, endo_steady_state, exo_steady_state, exo_det_steady_state)
% [fval,info,exit_flag,grad,hess,SteadyState,trend_coeff,PHI_tilde,SIGMA_u_tilde,iXX,prior] = dsge_var_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,dr, endo_steady_state, exo_steady_state, exo_det_steady_state)
% Evaluates the posterior kernel of the BVAR-DSGE model.
%
% INPUTS
% o xparam1 [double] Vector of model's parameters.
% o gend [integer] Number of observations (without conditionning observations for the lags).
% o dataset_ [dseries] object storing the dataset
% o dataset_info [structure] storing informations about the sample.
% o options_ [structure] describing the options
% o M_ [structure] decribing the model
% o estim_params_ [structure] characterizing parameters to be estimated
% o bayestopt_ [structure] describing the priors
% o BoundsInfo [structure] containing prior bounds
% o dr [structure] Reduced form model.
% o endo_steady_state [vector] steady state value for endogenous variables
% o exo_steady_state [vector] steady state value for exogenous variables
% o exo_det_steady_state [vector] steady state value for exogenous deterministic variables
%
% OUTPUTS
% o fval [double] Value of the posterior kernel at xparam1.
% o info [integer] Vector of informations about the penalty.
% o exit_flag [integer] Zero if the function returns a penalty, one otherwise.
% o grad [double] place holder for gradient of the likelihood
% currently not supported by dsge_var
% o hess [double] place holder for hessian matrix of the likelihood
% currently not supported by dsge_var
% o SteadyState [double] Steady state vector possibly recomputed
% by call to dynare_resolve()
% o trend_coeff [double] place holder for trend coefficients,
% currently not supported by dsge_var
% o PHI_tilde [double] Stacked BVAR-DSGE autoregressive matrices (at the mode associated to xparam1);
% formula (28), DS (2004)
% o SIGMA_u_tilde [double] Covariance matrix of the BVAR-DSGE (at the mode associated to xparam1),
% formula (29), DS (2004)
% o iXX [double] inv(lambda*T*Gamma_XX^*+ X'*X)
% o prior [double] a matlab structure describing the dsge-var prior
% - SIGMA_u_star: prior covariance matrix, formula (23), DS (2004)
% - PHI_star: prior autoregressive matrices, formula (22), DS (2004)
% - ArtificialSampleSize: number of artificial observations from the prior (T^* in DS (2004))
% - DF = prior.ArtificialSampleSize - NumberOfParameters - NumberOfObservedVariables;
% - iGXX_star: theoretical covariance of regressors ({\Gamma_{XX}^*}^{-1} in DS (2004))
%
% ALGORITHMS
% Follows the computations outlined in Del Negro/Schorfheide (2004):
% Priors from general equilibrium models for VARs, International Economic
% Review, 45(2), pp. 643-673
%
% SPECIAL REQUIREMENTS
% None.
% Copyright © 2006-2023Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Initialize some of the output arguments.
fval = [];
exit_flag = 1;
grad=[];
hess=[];
info = zeros(4,1);
PHI_tilde = [];
SIGMA_u_tilde = [];
iXX = [];
prior = [];
trend_coeff=[];
% Ensure that xparam1 is a column vector.
% (Don't do the transformation if xparam1 is empty, otherwise it would become a
% 0×1 matrix, which create issues with older MATLABs when comparing with [] in
% check_bounds_and_definiteness_estimation)
if ~isempty(xparam1)
xparam1 = xparam1(:);
end
% Initialization of of the index for parameter dsge_prior_weight in M_.params.
dsge_prior_weight_idx = strmatch('dsge_prior_weight', M_.param_names);
% Get the number of estimated (dsge) parameters.
nx = estim_params_.nvx + estim_params_.np;
% Get the number of observed variables in the VAR model.
NumberOfObservedVariables = dataset_.vobs;
% Get the number of observations.
NumberOfObservations = dataset_.nobs;
% Get the number of lags in the VAR model.
NumberOfLags = options_.dsge_varlag;
% Get the number of parameters in the VAR model.
NumberOfParameters = NumberOfObservedVariables*NumberOfLags ;
if ~options_.noconstant
NumberOfParameters = NumberOfParameters + 1;
end
% Get empirical second order moments for the observed variables.
mYY= dataset_info.mYY;
mYX= dataset_info.mYX;
mXX= dataset_info.mXX;
M_ = set_all_parameters(xparam1,estim_params_,M_);
[fval,info,exit_flag,Q]=check_bounds_and_definiteness_estimation(xparam1, M_, estim_params_, BoundsInfo);
if info(1)
return
end
% Get the weight of the dsge prior.
dsge_prior_weight = M_.params(dsge_prior_weight_idx);
% Is the dsge prior proper?
if dsge_prior_weight<(NumberOfParameters+NumberOfObservedVariables)/NumberOfObservations
fval = Inf;
exit_flag = 0;
info(1) = 51;
info(2)=dsge_prior_weight;
info(3)=(NumberOfParameters+NumberOfObservedVariables)/dataset_.nobs;
info(4)=abs(NumberOfObservations*dsge_prior_weight-(NumberOfParameters+NumberOfObservedVariables));
return
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
% Solve the Dsge model and get the matrices of the reduced form solution. T and R are the matrices of the
% state equation
[T,R,SteadyState,info] = dynare_resolve(M_,options_, dr, endo_steady_state, exo_steady_state, exo_det_steady_state,'restrict');
% Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol).
if info(1)
if info(1) == 3 || info(1) == 4 || info(1) == 5 || info(1)==6 ||info(1) == 19 ||...
info(1) == 20 || info(1) == 21 || info(1) == 23 || info(1) == 26 || ...
info(1) == 81 || info(1) == 84 || info(1) == 85
%meaningful second entry of output that can be used
fval = Inf;
info(4) = info(2);
exit_flag = 0;
return
else
fval = Inf;
info(4) = 0.1;
exit_flag = 0;
return
end
end
% Define the mean/steady state vector.
if ~options_.noconstant
if options_.loglinear
constant = transpose(log(SteadyState(bayestopt_.mfys)));
else
constant = transpose(SteadyState(bayestopt_.mfys));
end
else
constant = zeros(1,NumberOfObservedVariables);
end
%------------------------------------------------------------------------------
% 3. theoretical moments (second order)
%------------------------------------------------------------------------------
% Compute the theoretical second order moments
tmp0 = lyapunov_symm(T,R*Q*R',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, [], options_.debug);
mf = bayestopt_.mf1;
% Get the non centered second order moments
TheoreticalAutoCovarianceOfTheObservedVariables = zeros(NumberOfObservedVariables,NumberOfObservedVariables,NumberOfLags+1);
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) = tmp0(mf,mf)+constant'*constant;
for lag = 1:NumberOfLags
tmp0 = T*tmp0;
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,lag+1) = tmp0(mf,mf) + constant'*constant;
end
% Build the theoretical "covariance" between Y and X
GYX = zeros(NumberOfObservedVariables,NumberOfParameters);
for i=1:NumberOfLags
GYX(:,(i-1)*NumberOfObservedVariables+1:i*NumberOfObservedVariables) = TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1);
end
if ~options_.noconstant
GYX(:,end) = constant';
end
% Build the theoretical "covariance" between X and X
GXX = kron(eye(NumberOfLags), TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1));
for i = 1:NumberOfLags-1
tmp1 = diag(ones(NumberOfLags-i,1),i);
tmp2 = diag(ones(NumberOfLags-i,1),-i);
GXX = GXX + kron(tmp1,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1));
GXX = GXX + kron(tmp2,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1)');
end
if ~options_.noconstant
% Add one row and one column to GXX
GXX = [GXX , kron(ones(NumberOfLags,1),constant') ; [ kron(ones(1,NumberOfLags),constant) , 1] ];
end
GYY = TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1);
iGXX = inv(GXX);
PHI_star = iGXX*transpose(GYX); %formula (22), DS (2004)
SIGMA_u_star=GYY - GYX*PHI_star; %formula (23), DS (2004)
[SIGMA_u_star_is_positive_definite, penalty] = ispd(SIGMA_u_star);
if ~SIGMA_u_star_is_positive_definite
fval = Inf;
info(1) = 53;
info(4) = penalty;
exit_flag = 0;
return
end
if ~isinf(dsge_prior_weight)% Evaluation of the likelihood of the dsge-var model when the dsge prior weight is finite.
tmp0 = dsge_prior_weight*NumberOfObservations*TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) + mYY ; %first term of square bracket in formula (29), DS (2004)
tmp1 = dsge_prior_weight*NumberOfObservations*GYX + mYX; %first element of second term of square bracket in formula (29), DS (2004)
tmp2 = inv(dsge_prior_weight*NumberOfObservations*GXX+mXX); %middle element of second term of square bracket in formula (29), DS (2004)
SIGMA_u_tilde = tmp0 - tmp1*tmp2*tmp1'; %square bracket term in formula (29), DS (2004)
clear('tmp0');
[SIGMAu_is_positive_definite, penalty] = ispd(SIGMA_u_tilde);
if ~SIGMAu_is_positive_definite
fval = Inf;
info(1) = 52;
info(4) = penalty;
exit_flag = 0;
return
end
SIGMA_u_tilde = SIGMA_u_tilde / (NumberOfObservations*(1+dsge_prior_weight)); %prefactor of formula (29), DS (2004)
PHI_tilde = tmp2*tmp1'; %formula (28), DS (2004)
clear('tmp1');
prodlng1 = sum(gammaln(.5*((1+dsge_prior_weight)*NumberOfObservations- ...
NumberOfParameters ...
+1-(1:NumberOfObservedVariables)'))); %last term in numerator of third line of (A.2), DS (2004)
prodlng2 = sum(gammaln(.5*(dsge_prior_weight*NumberOfObservations- ...
NumberOfParameters ...
+1-(1:NumberOfObservedVariables)'))); %last term in denominator of third line of (A.2), DS (2004)
%Compute minus log likelihood according to (A.2), DS (2004)
lik = .5*NumberOfObservedVariables*log(det(dsge_prior_weight*NumberOfObservations*GXX+mXX)) ... %first term in numerator of second line of (A.2), DS (2004)
+ .5*((dsge_prior_weight+1)*NumberOfObservations-NumberOfParameters)*log(det((dsge_prior_weight+1)*NumberOfObservations*SIGMA_u_tilde)) ... %second term in numerator of second line of (A.2), DS (2004)
- .5*NumberOfObservedVariables*log(det(dsge_prior_weight*NumberOfObservations*GXX)) ... %first term in denominator of second line of (A.2), DS (2004)
- .5*(dsge_prior_weight*NumberOfObservations-NumberOfParameters)*log(det(dsge_prior_weight*NumberOfObservations*SIGMA_u_star)) ... %second term in denominator of second line of (A.2), DS (2004)
+ .5*NumberOfObservedVariables*NumberOfObservations*log(2*pi) ... %first term in numerator of third line of (A.2), DS (2004)
- .5*log(2)*NumberOfObservedVariables*((dsge_prior_weight+1)*NumberOfObservations-NumberOfParameters) ... %second term in numerator of third line of (A.2), DS (2004)
+ .5*log(2)*NumberOfObservedVariables*(dsge_prior_weight*NumberOfObservations-NumberOfParameters) ... %first term in denominator of third line of (A.2), DS (2004)
- prodlng1 + prodlng2;
else% Evaluation of the likelihood of the dsge-var model when the dsge prior weight is infinite.
PHI_star = iGXX*transpose(GYX);
%Compute minus log likelihood according to (33), DS (2004) (where the last term in the trace operator has been multiplied out)
lik = NumberOfObservations * ( log(det(SIGMA_u_star)) + NumberOfObservedVariables*log(2*pi) + ...
trace(inv(SIGMA_u_star)*(mYY - transpose(mYX*PHI_star) - mYX*PHI_star + transpose(PHI_star)*mXX*PHI_star)/NumberOfObservations));
lik = .5*lik;% Minus likelihood
SIGMA_u_tilde=SIGMA_u_star;
PHI_tilde=PHI_star;
end
if isnan(lik)
fval = Inf;
info(1) = 45;
info(4) = 0.1;
exit_flag = 0;
return
end
if imag(lik)~=0
fval = Inf;
info(1) = 46;
info(4) = 0.1;
exit_flag = 0;
return
end
% Add the (logged) prior density for the dsge-parameters.
lnprior = priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
fval = (lik-lnprior);
if isnan(fval)
fval = Inf;
info(1) = 47;
info(4) = 0.1;
exit_flag = 0;
return
end
if imag(fval)~=0
fval = Inf;
info(1) = 48;
info(4) = 0.1;
exit_flag = 0;
return
end
if isinf(fval)
fval = Inf;
info(1) = 50;
info(4) = 0.1;
exit_flag = 0;
return
end
if (nargout >= 10)
if isinf(dsge_prior_weight)
iXX = iGXX;
else
iXX = tmp2;
end
end
if (nargout==11)
prior.SIGMA_u_star = SIGMA_u_star;
prior.PHI_star = PHI_star;
prior.ArtificialSampleSize = fix(dsge_prior_weight*NumberOfObservations);
prior.DF = prior.ArtificialSampleSize - NumberOfParameters - NumberOfObservedVariables;
prior.iGXX_star = iGXX;
end