dynare/matlab/estimation/compute_Pinf_Pstar.m

188 lines
6.6 KiB
Matlab

function [Pstar,Pinf] = compute_Pinf_Pstar(mf,T,R,Q,qz_criterium, restrict_columns)
% [Pstar,Pinf] = compute_Pinf_Pstar(mf,T,R,Q,qz_criterium, restrict_columns)
% Kitagawa transformation of state space system with a quasi-triangular
% transition matrix with unit roots at the top, but excluding zero columns of the transition matrix.
% Computation of Pstar and Pinf for Durbin and Koopman Diffuse filter
%
% The transformed state space is
% y = [ss; z; x];
% s = static variables (zero columns of T)
% z = unit roots
% x = stable roots
% ss = s - z = stationarized static variables
%
% INPUTS
% mf [integer] vector of indices of observed variables in
% state vector
% T [double] matrix of transition
% R [double] matrix of structural shock effects
% Q [double] matrix of covariance of structural shocks
% qz_criterium [double] numerical criterium for unit roots
%
% OUTPUTS
% Pstar [double] matrix of covariance of stationary part
% Pinf [double] matrix of covariance initialization for
% nonstationary part
%
% ALGORITHM
% Real Schur transformation of transition equation
%
% SPECIAL REQUIREMENTS
% None
% Copyright © 2006-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
np = size(T,1);
if iszero(Q)
% this may happen if users set Q=0 and use heteroskedastic shocks to set
% variances period by period
% this in practice triggers a form of conditional filter where states
% are initialized at st. state with zero variances
Pstar=T*0;
Pinf=T*0;
return
end
if nargin == 6
indx = restrict_columns;
indx0=find(~ismember(1:np,indx));
else
indx=(find(max(abs(T))>=1.e-10));
indx0=(find(max(abs(T))<1.e-10));
end
np0=length(indx0);
T0=T(indx0,indx); % static variables vs. dynamic ones
R0=R(indx0,:); % matrix of shocks for static variables
% Perform Kitagawa transformation only for non-zero columns of T
T=T(indx,indx);
R=R(indx,:);
np = size(T,1);
[QT,ST] = schur(T);
e1 = abs(ordeig(ST)) > 2-qz_criterium;
[QT,ST] = ordschur(QT,ST,e1);
k = find(abs(ordeig(ST)) > 2-qz_criterium);
nk = length(k);
nk1 = nk+1;
Pstar = zeros(np,np);
R1 = QT'*R;
B = R1*Q*R1';
i = np;
while i >= nk+2
if ST(i,i-1) == 0
if i == np
c = zeros(np-nk,1);
else
c = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i,i+1:end)')+...
ST(i,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i);
end
q = eye(i-nk)-ST(nk1:i,nk1:i)*ST(i,i);
Pstar(nk1:i,i) = q\(B(nk1:i,i)+c);
Pstar(i,nk1:i-1) = Pstar(nk1:i-1,i)';
i = i - 1;
else
if i == np
c = zeros(np-nk,1);
c1 = zeros(np-nk,1);
else
c = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i,i+1:end)')+...
ST(i,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i)+...
ST(i,i-1)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i-1);
c1 = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i-1,i+1:end)')+...
ST(i-1,i-1)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i-1)+...
ST(i-1,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i);
end
q = [eye(i-nk)-ST(nk1:i,nk1:i)*ST(i,i) -ST(nk1:i,nk1:i)*ST(i,i-1);...
-ST(nk1:i,nk1:i)*ST(i-1,i) eye(i-nk)-ST(nk1:i,nk1:i)*ST(i-1,i-1)];
z = q\[B(nk1:i,i)+c;B(nk1:i,i-1)+c1];
Pstar(nk1:i,i) = z(1:(i-nk));
Pstar(nk1:i,i-1) = z(i-nk+1:end);
Pstar(i,nk1:i-1) = Pstar(nk1:i-1,i)';
Pstar(i-1,nk1:i-2) = Pstar(nk1:i-2,i-1)';
i = i - 2;
end
end
if i == nk+1
c = ST(nk+1,:)*(Pstar(:,nk+2:end)*ST(nk1,nk+2:end)')+ST(nk1,nk1)*ST(nk1,nk+2:end)*Pstar(nk+2:end,nk1);
Pstar(nk1,nk1)=(B(nk1,nk1)+c)/(1-ST(nk1,nk1)*ST(nk1,nk1));
end
if np0
% Now I recover stationarized static variables using
% ss = s-A*z
% and
% z-z(-1) (growth rates of unit roots) only depends on stationary variables
Pstar = blkdiag(zeros(np0),Pstar);
ST = [zeros(length(Pstar),length(indx0)) [T0*QT ;ST]];
R1 = [R0; R1];
% Build the matrix for stationarized variables
STinf = ST(np0+1:np0+nk,np0+1:np0+nk);
iSTinf = inv(STinf);
ST0=ST;
ST0(:,1:np0+nk)=0; % stationarized static + 1st difference only respond to lagged stationary states
ST00 = ST(1:np0,np0+1:np0+nk);
% A\B is the matrix division of A into B, which is roughly the
% same as INV(A)*B
ST0(1:np0,np0+nk+1:end) = ST(1:np0,np0+nk+1:end)-ST00*(iSTinf*ST(np0+1:np0+nk,np0+nk+1:end)); % snip non-stationary part
R10 = R1;
R10(1:np0,:) = R1(1:np0,:)-ST00*(iSTinf*R1(np0+1:np0+nk,:)); % snip non-stationary part
% Kill non-stationary part before projecting Pstar
ST0(np0+1:np0+nk,:)=0;
R10(np0+1:np0+nk,:)=0; % is this questionable???? IT HAS TO in order to match Michel's version!!!
% project Pstar onto static x
Pstar = ST0*Pstar*ST0'+R10*Q*R10';
% QT(1:np0,np0+1:np0+nk) = QT(1:np0,np0+1:np0+nk)+ST(1:np0,np0+1:np0+nk); %%% is this questionable ????
% reorder QT entries
else
STinf = ST(np0+1:np0+nk,np0+1:np0+nk);
end
% stochastic trends with no influence on observed variables are
% arbitrarily initialized to zero
Pinf = zeros(np,np);
Pinf(1:nk,1:nk) = eye(nk);
if np0
STtriu = STinf-eye(nk);
% A\B is the matrix division of A into B, which is roughly the
% same as INV(A)*B
STinf0 = ST00*(eye(nk)-iSTinf*STtriu);
Pinf = blkdiag(zeros(np0),Pinf);
QT = blkdiag(eye(np0),QT);
QTinf = QT;
QTinf(1:np0,np0+1:np0+nk) = STinf0;
QTinf([indx0(:); indx(:)],:) = QTinf;
STinf1 = [zeros(np0+np,np0) [STinf0; eye(nk); zeros(np-nk,nk)] zeros(np0+np,np-nk)];
mf = ismember([indx0(:); indx(:)],mf);
for k = 1:nk
if norm(QTinf(mf,:)*ST([indx0(:); indx(:)],k+np0)) < 1e-8
Pinf(k+np0,k+np0) = 0;
end
end
Pinf = STinf1*Pinf*STinf1';
QT([indx0(:); indx(:)],:) = QT;
else
for k = 1:nk
if norm(QT(mf,:)*ST(:,k)) < 1e-8
Pinf(k+np0,k+np0) = 0;
end
end
end
Pinf = QT*Pinf*QT';
Pstar = QT*Pstar*QT';