dynare/matlab/build_two_dim_hessian.m

59 lines
2.1 KiB
Matlab
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

function H = build_two_dim_hessian(sparse_indices, g2_v, neq, nvar)
% Creates a 2D Hessian (equations in rows, pairs of variables in columns),
% given the output from the sparse {static,dynamic}_g2.m
%
% sparse_indices is typically equal to M_.{static,dynamic}_g2_sparse_indices
% g2_v is the vector of non zero values returned by {static,dynamic}_g2.m
% neq is the number of equations (equal to number of rows of the output matrix)
% nvar is the number of variables (the output matrix will have nvar² columns)
% Copyright © 2024 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
nnz = size(sparse_indices, 1);
%% The g2_* arrays may be expanded if there are symmetric elements added
g2_i = int32(zeros(nnz, 1));
g2_j = int32(zeros(nnz, 1));
next_sym_idx = nnz + 1; % Index of next symmetric element to be added
for k = 1:length(g2_v)
eq = sparse_indices(k, 1);
var1 = sparse_indices(k, 2)-1;
var2 = sparse_indices(k, 3)-1;
g2_i(k) = eq;
g2_j(k) = var1 * nvar + var2 + 1;
%% Add symmetric elements, which are not included by sparse {static,dynamic}_g2.m
if var1 ~= var2
g2_i(next_sym_idx) = eq;
g2_j(next_sym_idx) = var2 * nvar + var1 + 1;
g2_v(next_sym_idx) = g2_v(k);
next_sym_idx = next_sym_idx + 1;
end
end
%% On MATLAB < R2020a, sparse() does not accept int32 indices
if ~isoctave && matlab_ver_less_than('9.8')
g2_i = double(g2_i);
g2_j = double(g2_j);
end
H = sparse(g2_i, g2_j, g2_v, neq, nvar*nvar);