dynare/matlab/+pruned_SS/prodmom_deriv.m

176 lines
5.9 KiB
Matlab

function [y,dy] = prodmom_deriv(V,ii,nu,dV,dC)
% Computes the product moments (and its derivatives with respect to standard
% errors and correlation parameters) of normally distributed variables, i.e.
% this function computes the product moment of
% X_{i_1}^{nu_1}X_{i_2}^{nu_2}...X_{i_m}^{nu_m}, where X_{i_j} are elements
% from X ~ N(0_n,V) and V is positive semidefinite.
% Example: To get E[X_2X_4^3X_7^2], use prodmom_deriv(V,[2 4 7],[1 3 2])
% =========================================================================
% INPUTS
% V [n by n] covariance matrix of X (needs to be positive semidefinite)
% ii [m by 1] vector of i_j
% nu [nu_m by 1] power of X_{i_j}
% dV [n by n by stderrparam_nbr+corrparam_nbr] derivative of V with respect
% to selected standard error (stderr)
% and correlation (corr) parameters
% dC [n by n by stderrparam_nbr+corrparam_nbr] derivative of Correlation matrix C with respect
% to selected standard error (stderr)
% and correlation (corr) parameters
% -------------------------------------------------------------------------
% OUTPUTS
% y [1 by 1] product moment E[X_{i_1}^{nu_1}X_{i_2}^{nu_2}...X_{i_m}^{nu_m}]
% dy [1 by stderrparam_nbr+corrparam_nbr] derivatives of y wrt to selected
% standard error and corr parameters
% -------------------------------------------------------------------------
% This function is based upon prodmom.m which is part of replication codes
% of the following paper:
% Kan, R.: "From moments of sum to moments of product." Journal of
% Multivariate Analysis, 2008, vol. 99, issue 3, pages 542-554.
% prodmom.m can be retrieved from http://www-2.rotman.utoronto.ca/~kan/papers/prodmom.zip
% Further references:
% Triantafyllopoulos (2003) On the Central Moments of the Multidimensional
% Gaussian Distribution, Mathematical Scientist
% Kotz, Balakrishnan, and Johnson (2000), Continuous Multivariate
% Distributions, Vol. 1, p.261
% =========================================================================
% Copyright © 2008-2015 Raymond Kan <kan@chass.utoronto.ca>
% Copyright © 2019-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% =========================================================================
if nargin<3
nu = ones(size(ii));
end
s = sum(nu);
if s==0
y = 1;
if nargout > 1
dy = zeros(1,1,size(dV,3));
end
return
end
if rem(s,2)==1
y = 0;
if nargout > 1
dy = zeros(1,1,size(dV,3));
end
return
end
nuz = nu==0;
nu(nuz) = [];
ii(nuz) = [];
m = length(ii);
V = V(ii,ii);
if nargout > 1
dV = dV(ii,ii,:);
end
s2 = s/2;
%
% Use univariate normal results
%
if m==1
y = V^s2*prod(1:2:s-1);
if nargout > 1
dy = s2*V^(s2-1)*dV*prod(1:2:s-1);
dy = reshape(dy,1,size(dV,3));
end
return
end
%
% Use bivariate normal results when there are only two distinct indices
%
if m==2
if V(1,1)==0 || V(2,2)==0
y=0;
if nargout>1
dy=zeros(1,size(dV,3));
end
return
end
rho = V(1,2)/sqrt(V(1,1)*V(2,2));
if nargout > 1
drho = dC(ii(1),ii(2),:);
[tmp,dtmp] = pruned_SS.bivmom(nu,rho);
dy = (nu(1)/2)*V(1,1)^(nu(1)/2-1)*dV(1,1,:) * V(2,2)^(nu(2)/2) * tmp...
+ V(1,1)^(nu(1)/2) * (nu(2)/2)*V(2,2)^(nu(2)/2-1)*dV(2,2,:) * tmp...
+ V(1,1)^(nu(1)/2) * V(2,2)^(nu(2)/2) * dtmp * drho;
dy = reshape(dy,1,size(dV,3));
else
tmp = pruned_SS.bivmom(nu,rho);
end
y = V(1,1)^(nu(1)/2)*V(2,2)^(nu(2)/2)*tmp;
return
end
%
% Regular case
%
[nu,inu] = sort(nu,2,'descend');
V = V(inu,inu); % Extract only the relevant part of V
x = zeros(1,m);
V = V./2;
nu2 = nu./2;
p = 2;
q = nu2*V*nu2';
y = 0;
if nargout > 1
dV = dV(inu,inu,:); % Extract only the relevant part of dV
dV = dV./2;
%dq = nu2*dV*nu2';
%dq = multiprod(multiprod(nu2,dV),nu2');
dq = NaN(size(q,1), size(q,2), size(dV,3));
for jp = 1:size(dV,3)
dq(:,:,jp) = nu2*dV(:,:,jp)*nu2';
end
dy = 0;
end
for i=1:fix(prod(nu+1)/2)
y = y+p*q^s2;
if nargout > 1
dy = dy+p*s2*q^(s2-1)*dq;
end
for j=1:m
if x(j)<nu(j)
x(j) = x(j)+1;
p = -round(p*(nu(j)+1-x(j))/x(j));
q = q-2*(nu2-x)*V(:,j)-V(j,j);
if nargout > 1
%dq = dq-2*(nu2-x)*dV(:,j,:)-dV(j,j,:);
%dq = dq-2*multiprod((nu2-x),dV(:,j,:))-dV(j,j,:);
for jp=1:size(dV,3)
dq(:,:,jp) = dq(:,:,jp)-2*(nu2-x)*dV(:,j,jp)-dV(j,j,jp);
end
end
break
else
x(j) = 0;
if rem(nu(j),2)==1
p = -p;
end
if nargout > 1
%dq = dq+2*nu(j)*multiprod((nu2-x),dV(:,j,:))-nu(j)^2*dV(j,j,:);
for jp=1:size(dV,3)
dq(:,:,jp) = dq(:,:,jp)+2*nu(j)*(nu2-x)*dV(:,j,jp)-nu(j)^2*dV(j,j,jp);
end
end
q = q+2*nu(j)*(nu2-x)*V(:,j)-nu(j)^2*V(j,j);
end
end
end
y = y/prod(1:s2);
if nargout > 1
dy = dy/prod(1:s2);
dy = reshape(dy,1,size(dV,3));
end