function dr=set_state_space(dr,M_) % function dr = set_state_space(dr,M_) % finds the state vector for structural state space representation % sets many fields of dr % % INPUTS % dr: structure of decision rules for stochastic simulations % % OUTPUTS % dr: structure of decision rules for stochastic simulations % % ALGORITHM % ... % SPECIAL REQUIREMENTS % none % % Copyright (C) 1996-2010 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . max_lead = M_.maximum_endo_lead; max_lag = M_.maximum_endo_lag; endo_nbr = M_.endo_nbr; lead_lag_incidence = M_.lead_lag_incidence; klen = max_lag + max_lead + 1; fwrd_var = find(any(lead_lag_incidence(max_lag+2:end,:),1))'; if max_lag > 0 pred_var = find(any(lead_lag_incidence(1,:),1))'; both_var = intersect(pred_var,fwrd_var); pred_var = setdiff(pred_var,both_var); fwrd_var = setdiff(fwrd_var,both_var); stat_var = setdiff([1:endo_nbr]',union(union(pred_var,both_var),fwrd_var)); % static variables else pred_var = []; both_var = []; stat_var = setdiff([1:endo_nbr]',fwrd_var); end nboth = length(both_var); npred = length(pred_var); nfwrd = length(fwrd_var); nstatic = length(stat_var); order_var = [ stat_var(:); pred_var(:); both_var(:); fwrd_var(:)]; inv_order_var(order_var) = (1:endo_nbr); % building kmask for z state vector in t+1 if max_lag > 0 kmask = []; if max_lead > 0 kmask = [cumsum(flipud(lead_lag_incidence(max_lag+2:end,order_var)),1)] ; end kmask = [kmask; flipud(cumsum(lead_lag_incidence(1,order_var),1))] ; else kmask = cumsum(flipud(lead_lag_incidence(max_lag+2:klen,order_var)),1) ; end kmask = kmask'; kmask = kmask(:); i_kmask = find(kmask); nd = nnz(kmask); % size of the state vector kmask(i_kmask) = (1:nd); % auxiliary equations % elements that are both in z(t+1) and z(t) k1 = find([kmask(1:end-M_.endo_nbr) & kmask(M_.endo_nbr+1:end)] ); kad = []; kae = []; if ~isempty(k1) kad = kmask(k1+M_.endo_nbr); kae = kmask(k1); end % composition of state vector % col 1: variable; col 2: lead/lag in z(t+1); % col 3: A cols for t+1 (D); col 4: A cols for t (E) kstate = [ repmat([1:endo_nbr]',klen-1,1) kron([klen:-1:2]',ones(endo_nbr,1)) ... zeros((klen-1)*endo_nbr,2)]; kiy = flipud(lead_lag_incidence(:,order_var))'; kiy = kiy(:); if max_lead > 0 kstate(1:endo_nbr,3) = kiy(1:endo_nbr)-nnz(lead_lag_incidence(max_lag+1,:)); kstate(kstate(:,3) < 0,3) = 0; kstate(endo_nbr+1:end,4) = kiy(2*endo_nbr+1:end); else kstate(:,4) = kiy(endo_nbr+1:end); end kstate = kstate(i_kmask,:); dr.order_var = order_var; dr.inv_order_var = inv_order_var'; dr.nstatic = nstatic; dr.npred = npred+nboth; dr.kstate = kstate; dr.kad = kad; dr.kae = kae; dr.nboth = nboth; dr.nfwrd = nfwrd; % number of forward variables in the state vector dr.nsfwrd = nfwrd+nboth; % number of predetermined variables in the state vector dr.nspred = npred+nboth; dr.transition_auxiliary_variables = [];