% proc gmchol(A); % /* calculates the Gill-Murray generalized choleski decomposition */ % /* input matrix A must be non-singular and symmetric */ % /* Author: Jeff Gill. Part of the Hessian Project. */ % local i,j,k,n,sum,R,theta_j,norm_A,phi_j,delta,xi_j,gamm,E,beta_j; function AA = generalized_cholesky(A); n = rows(A); R = eye(n); E = zeros(n,n); norm_A = max(transpose(sum(abs(A)))); gamm = max(abs(diag(A))); delta = max([eps*norm_A;eps]); for j = 1:n; theta_j = 0; for i=1:n; somme = 0; for k=1:i-1; somme = somme + R(k,i)*R(k,j); end; R(i,j) = (A(i,j) - somme)/R(i,i); if (A(i,j) -somme) > theta_j; theta_j = A(i,j) - somme; end; if i > j; R(i,j) = 0; end; end; somme = 0; for k=1:j-1; somme = somme + R(k,j)^2; end; phi_j = A(j,j) - somme; if j+1 <= n; xi_j = max(abs(A((j+1):n,j))); else; xi_j = abs(A(n,j)); end; beta_j = sqrt(max([gamm ; (xi_j/n) ; eps])); if all(delta >= [abs(phi_j);((theta_j^2)/(beta_j^2))]); E(j,j) = delta - phi_j; elseif all(abs(phi_j) >= [((delta^2)/(beta_j^2));delta]); E(j,j) = abs(phi_j) - phi_j; elseif all(((theta_j^2)/(beta_j^2)) >= [delta;abs(phi_j)]); E(j,j) = ((theta_j^2)/(beta_j^2)) - phi_j; end; R(j,j) = sqrt(A(j,j) - somme + E(j,j)); end; AA = transpose(R)*R;