function [alphahat,epsilonhat,etahat,a, aK] = DiffuseKalmanSmootherH1(T,R,Q,H,Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf) % function [alphahat,epsilonhat,etahat,a, aK] = DiffuseKalmanSmootherH1(T,R,Q,H,Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf) % Computes the diffuse kalman smoother with measurement error, in the case of a non-singular var-cov matrix % % INPUTS % T: mm*mm matrix % R: mm*rr matrix % Q: rr*rr matrix % Pinf1: mm*mm diagonal matrix with with q ones and m-q zeros % Pstar1: mm*mm variance-covariance matrix with stationary variables % Y: pp*1 vector % trend % pp: number of observed variables % mm: number of state variables % smpl: sample size % mf: observed variables index in the state vector % % OUTPUTS % alphahat: smoothed state variables % epsilonhat:smoothed measurement errors % etahat: smoothed shocks % a: matrix of one step ahead filtered state variables % aK: 3D array of k step ahead filtered state variables % % SPECIAL REQUIREMENTS % See "Filtering and Smoothing of State Vector for Diffuse State Space % Models", S.J. Koopman and J. Durbin (2003, in Journal of Time Series % Analysis, vol. 24(1), pp. 85-98). % Copyright (C) 2004-2008 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . % modified by M. Ratto: % new output argument aK (1-step to k-step predictions) % new options_.nk: the max step ahed prediction in aK (default is 4) % new crit1 value for rank of Pinf % it is assured that P is symmetric global options_ nk = options_.nk; spinf = size(Pinf1); spstar = size(Pstar1); v = zeros(pp,smpl); a = zeros(mm,smpl+1); aK = zeros(nk,mm,smpl+nk); iF = zeros(pp,pp,smpl); Fstar = zeros(pp,pp,smpl); iFinf = zeros(pp,pp,smpl); K = zeros(mm,pp,smpl); L = zeros(mm,mm,smpl); Linf = zeros(mm,mm,smpl); Kstar = zeros(mm,pp,smpl); P = zeros(mm,mm,smpl+1); Pstar = zeros(spstar(1),spstar(2),smpl+1); Pstar(:,:,1) = Pstar1; Pinf = zeros(spinf(1),spinf(2),smpl+1); Pinf(:,:,1) = Pinf1; crit = options_.kalman_tol; crit1 = 1.e-8; steady = smpl; rr = size(Q,1); QQ = R*Q*transpose(R); QRt = Q*transpose(R); alphahat = zeros(mm,smpl); etahat = zeros(rr,smpl); epsilonhat = zeros(size(Y)); r = zeros(mm,smpl); Z = zeros(pp,mm); for i=1:pp; Z(i,mf(i)) = 1; end t = 0; while rank(Pinf(:,:,t+1),crit1) & td+1 & t>2 t = t-1; r(:,t-1) = transpose(Z)*iF(:,:,t)*v(:,t) + transpose(L(:,:,t))*r(:,t); alphahat(:,t) = a(:,t) + P(:,:,t)*r(:,t-1); etahat(:,t) = QRt*r(:,t); end if d r0 = zeros(mm,d); r0(:,d) = r(:,d); r1 = zeros(mm,d); for t = d:-1:2 r0(:,t-1) = transpose(Linf(:,:,t))*r0(:,t); r1(:,t-1) = transpose(Z)*(iFinf(:,:,t)*v(:,t)-transpose(Kstar(:,:,t))*r0(:,t)) + transpose(Linf(:,:,t))*r1(:,t); alphahat(:,t) = a(:,t) + Pstar(:,:,t)*r0(:,t-1) + Pinf(:,:,t)*r1(:,t-1); etahat(:,t) = QRt*r0(:,t); end r0_0 = transpose(Linf(:,:,1))*r0(:,1); r1_0 = transpose(Z)*(iFinf(:,:,1)*v(:,1)-transpose(Kstar(:,:,1))*r0(:,1)) + transpose(Linf(:,:,1))*r1(:,1); alphahat(:,1) = a(:,1) + Pstar(:,:,1)*r0_0 + Pinf(:,:,1)*r1_0; etahat(:,1) = QRt*r0(:,1); else r0 = transpose(Z)*iF(:,:,1)*v(:,1) + transpose(L(:,:,1))*r(:,1); alphahat(:,1) = a(:,1) + P(:,:,1)*r0; etahat(:,1) = QRt*r(:,1); end epsilonhat = Y-alphahat(mf,:)-trend;