
DYNARE

User Guide

© Tommaso Mancini Griffoli, 2007

An introduction to 

the solution & estimation of DSGE models



Dynare v4 - User Guide
Public beta version

Tommaso Mancini Griffoli
tommaso.mancini@stanfordalumni.org

This draft: March 2007

Contents

Contents i

List of Figures iv

1 Introduction 1
1.1 About this Guide - approach and structure . . . . . . . . . . . 1
1.2 What is Dynare? . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Additional sources of help . . . . . . . . . . . . . . . . . . . . . 4
1.4 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 v4, what’s new and backward compatibility . . . . . . . . . . . 5

i



ii CONTENTS

2 Installing Dynare 7
2.1 Dynare versions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 System requirements . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Installing Dynare . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Installing on Windows . . . . . . . . . . . . . . . . . . . 8
2.4 Matlab particularities . . . . . . . . . . . . . . . . . . . . . . . 8

3 Solving DSGE models - basics 9
3.1 A fundamental distinction . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 NOTE! Deterministic vs stochastic models . . . . . . . . 10
3.2 Introducing an example . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Dynare .mod file structure . . . . . . . . . . . . . . . . . . . . . 15
3.4 Filling out the preamble . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 The deterministic case . . . . . . . . . . . . . . . . . . . 16
3.4.2 The stochastic case . . . . . . . . . . . . . . . . . . . . . 16
3.4.3 Comments on your first lines of Dynare code . . . . . . 17

3.5 Specifying the model . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.1 Model in Dynare notation . . . . . . . . . . . . . . . . . 18
3.5.2 General conventions . . . . . . . . . . . . . . . . . . . . 19
3.5.3 Notational conventions . . . . . . . . . . . . . . . . . . . 19
3.5.4 Timing conventions . . . . . . . . . . . . . . . . . . . . 19
3.5.5 Conventions specifying non-predetermined variables . . 20
3.5.6 Linear and log-linearized models . . . . . . . . . . . . . 20

3.6 Specifying steady states and/or initial values . . . . . . . . . . 21
3.6.1 Stochastic models and steady states . . . . . . . . . . . 21
3.6.2 Deterministic models and initial values . . . . . . . . . . 23
3.6.3 Finding a steady state . . . . . . . . . . . . . . . . . . . 23
3.6.4 Checking system stability . . . . . . . . . . . . . . . . . 24

3.7 Adding shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.1 Deterministic models - temporary shocks . . . . . . . . 25
3.7.2 Deterministic models - permanent shocks . . . . . . . . 25
3.7.3 Stochastic models . . . . . . . . . . . . . . . . . . . . . 27

3.8 Selecting a computation . . . . . . . . . . . . . . . . . . . . . . 27
3.8.1 For deterministic models . . . . . . . . . . . . . . . . . . 28
3.8.2 For stochastic models . . . . . . . . . . . . . . . . . . . 28

3.9 The complete .mod file . . . . . . . . . . . . . . . . . . . . . . . 31
3.9.1 The stochastic model . . . . . . . . . . . . . . . . . . . . 31
3.9.2 The deterministic model (case of temporary shock) . . . 32

3.10 File execution and results . . . . . . . . . . . . . . . . . . . . . 33
3.10.1 Results - stochastic models . . . . . . . . . . . . . . . . 33
3.10.2 Results - deterministic models . . . . . . . . . . . . . . 34



iii

4 Solving DSGE models - advanced topics 37
4.1 Dynare features and functionality . . . . . . . . . . . . . . . . . 37

4.1.1 Other examples . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Alternative, complete example . . . . . . . . . . . . . . 38
4.1.3 Finding, saving and viewing your output . . . . . . . . . 41
4.1.4 Referring to external files . . . . . . . . . . . . . . . . . 42
4.1.5 Infinite eigenvalues . . . . . . . . . . . . . . . . . . . . . 42

4.2 Files created by Dynare . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Modeling tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Stationarizing your model . . . . . . . . . . . . . . . . . 44
4.3.2 Expectations taken in the past . . . . . . . . . . . . . . 44
4.3.3 Infinite sums . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.4 Infinite sums with changing timing of expectations . . . 46

5 Estimating DSGE models - basics 47
5.1 Introducing an example . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Declaring variables and parameters . . . . . . . . . . . . . . . . 48
5.3 Declaring the model . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Declaring observable variables . . . . . . . . . . . . . . . . . . . 49
5.5 Specifying the steady state . . . . . . . . . . . . . . . . . . . . 49
5.6 Declaring priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7 Launching the estimation . . . . . . . . . . . . . . . . . . . . . 52
5.8 The complete .mod file . . . . . . . . . . . . . . . . . . . . . . . 55
5.9 Interpreting output . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.9.1 Tabular results . . . . . . . . . . . . . . . . . . . . . . . 57
5.9.2 Graphical results . . . . . . . . . . . . . . . . . . . . . . 57

6 Estimating DSGE models - advanced topics 61
6.1 Alternative and non-stationary example . . . . . . . . . . . . . 61

6.1.1 Introducing the example . . . . . . . . . . . . . . . . . . 61
6.1.2 Declaring variables and parameters . . . . . . . . . . . . 66
6.1.3 The origin of non-stationarity . . . . . . . . . . . . . . . 66
6.1.4 Stationarizing variables . . . . . . . . . . . . . . . . . . 67
6.1.5 Linking stationary variables to the data . . . . . . . . . 68
6.1.6 The resulting model block of the .mod file . . . . . . . . 68
6.1.7 Declaring observable variables . . . . . . . . . . . . . . . 69
6.1.8 Declaring trends in observable variables . . . . . . . . . 69
6.1.9 Declaring unit roots in observable variables . . . . . . . 70
6.1.10 Specifying the steady state . . . . . . . . . . . . . . . . 71
6.1.11 Declaring priors . . . . . . . . . . . . . . . . . . . . . . 71
6.1.12 Launching the estimation . . . . . . . . . . . . . . . . . 71
6.1.13 The complete .mod file . . . . . . . . . . . . . . . . . . . 72
6.1.14 Summing it up . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Comparing models based on their posterior distributions . . . . 74



6.3 Where is your output stored? . . . . . . . . . . . . . . . . . . . 75

7 Solving DSGE models - Behind the scenes of Dynare 77
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 What is the advantage of a second order approximation? . . . . 77
7.3 How does dynare solve stochastic DSGE models? . . . . . . . . 78

8 Estimating DSGE models - Behind the scenes of Dynare 81
8.1 Advantages of Bayesian estimation . . . . . . . . . . . . . . . . 81
8.2 The basic mechanics of Bayesian estimation . . . . . . . . . . . 83

8.2.1 Bayesian estimation: somewhere between calibration and
maximum likelihood estimation - an example . . . . . . 84

8.3 DSGE models and Bayesian estimation . . . . . . . . . . . . . . 85
8.3.1 Rewriting the solution to the DSGE model . . . . . . . 85
8.3.2 Estimating the likelihood function of the DSGE model . 86
8.3.3 Finding the mode of the posterior distribution . . . . . 87
8.3.4 Estimating the posterior distribution . . . . . . . . . . . 87

8.4 Comparing models using posterior distributions . . . . . . . . . 90

9 Optimal policy under commitment 93

10 Troubleshooting 95

Bibliography 97

List of Figures

1.1 Dynare, a bird’s eyeview . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Structure of the .mod file . . . . . . . . . . . . . . . . . . . . . . . 16

6.1 CIA model illustration . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Steps of model estimation . . . . . . . . . . . . . . . . . . . . . . . 74

8.1 Illustration of the Metropolis-Hastings algorithm . . . . . . . . . . 89

iv



Work in Progress!

This is the second version of the Dynare User Guide which is still work in
progress! This means two things. First, please read this with a critical eye
and send me comments! Are some areas unclear? Is anything plain wrong?
Are some sections too wordy, are there enough examples, are these clear? On
the contrary, are there certain parts that just click particularly well? How can
others be improved? I’m very interested to get your feedback.

The second thing that a work in progress manuscript comes with is a few
internal notes. These are mostly placeholders for future work, notes to myself
or others of the Dynare development team, or at times notes to you - our read-
ers - to highlight a feature not yet fully stable. Any such notes are marked
with two stars (**).

Thanks very much for your patience and good ideas. Please write either
direclty to myself: tommaso.mancini@stanfordalumni.org, or preferably on
the Dynare Documentation Forum available in the Forum section of the
Dynare website.

v
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Chapter 1

Introduction

Welcome to Dynare!

1.1 About this Guide - approach and structure

This User Guide aims to help you master Dynare’s main functionalities,
from getting started to implementing advanced features. To do so, this Guide
is structured around examples and offers practical advice. To root this un-
derstanding more deeply, though, this Guide also gives some background on
Dynare’s algorithms, methodologies and underlying theory. Thus, a secondary
function of this Guide is to serve as a basic primer on DSGE model solving
and Bayesian estimation.

This Guide will focus on the most common or useful features of the pro-
gram, thus emphasizing depth over breadth. The idea is to get you to
use 90% of the program well and then tell you where else to look if you’re
interested in fine tuning or advanced customization.

This Guide is written mainly for an advanced economist - like a pro-
fessor, graduate student or central banker - needing a powerful and flexible
program to support and facilitate his or her research activities in a variety
of fields. The sophisticated computer programmer, on the one hand, or the
specialist of computational economics, on the other, may not find this Guide
sufficiently detailed.

We recognize that the “advanced economist” may be either a beginning
or intermediate user of Dynare. This Guide is written to accommodate both.
If you’re new to Dynare, we recommend starting with chapters 3 and 5,
which introduce the program’s basic features to solve (including running im-
pulse response functions) and estimate DSGE models, respectively. To do

1



2 CHAPTER 1. INTRODUCTION

so, these chapters lead you through a complete hands-on example, which we
recommend following from A to Z, in order to “learn by doing”. Once you
have read these two chapters, you will know the crux of Dynare’s functionality
and (hopefully!) feel comfortable using Dynare for your own work. At that
point, though, you will probably find yourself coming back to the User Guide
to skim over some of the content in the advanced chapters to iron out details
and potential complications you may run into.

If you’re instead an intermediate user of Dynare, you will most likely
find the advanced chapters, 4 and 6, more appropriate. These chapters cover
more advanced features of Dynare and more complicated usage scenarios. The
presumption is that you would skip around these chapters to focus on the top-
ics most applicable to your needs and curiosity. Examples are therefore more
concise and specific to each feature; these chapters read a bit more like a ref-
erence manual.

We also recognize that you probably have had repeated if not active ex-
posure to programming and are likely to have a strong economic background.
Thus, a black box solution to your needs is inadequate. To hopefully address
this issue, the User Guide goes into some depth in covering the theoreti-
cal underpinnings and methodologies that Dynare follows to solve
and estimate DSGE models. These are available in the “behind the scenes of
Dynare” chapters 7 and 8. These chapters can also serve as a basic primer
if you are new to the practice of DSGE model solving and Bayesian estimation.

Finally, besides breaking up content into short chapters, we’ve introduced
two different markers throughout the Guide to help streamline your reading.

• TIP! introduces advice to help you work more efficiently with Dynare
or solve common problems.

• NOTE! is used to draw your attention to particularly important infor-
mation you should keep in mind when using Dynare.

1.2 What is Dynare?

Before we dive into the thick of the “trees”, let’s have a look at the “forest”
from the top . . . just what is Dynare?

Dynare is a powerful and highly customizable engine, with an
intuitive front-end interface, to solve, simulate and estimate DSGE
models.
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Figure 1.1: The .mod file being read by the Dynare pre-processor, which then
calls the relevant Matlab routines to carry out the desired operations and
display the results.

In slightly less flowery words, it is a pre-processor and a collection of Mat-
lab routines that has the great advantages of reading DSGE model equations
written almost as in an academic paper. This not only facilitates the inputting
of a model, but also enables you to easily share your code as it is straightfor-
ward to read by anyone.

Figure 1.2 gives you an overview of the way Dynare works. Basically, the
model and its related attributes, like a shock structure for instance, is writ-
ten equation by equation in an editor of your choice. The resulting file will
be called the .mod file. That file is then called from Matlab. This initiates
the Dynare pre-processor which translates the .mod file into a suitable input
for the Matlab routines (more precisely, it creates intermediary Matlab or C
files which are then used by Matlab code) used to either solve or estimate the
model. Finally, results are presented in Matlab. Some more details on the
internal files generated by Dynare is given in section 4.2 in chapter 4.

Each of these steps will become clear as you read through the User Guide,
but for now it may be helpful to summarize what Dynare is able to do:
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• compute the steady state of a model

• compute the solution of deterministic models

• compute the first and second order approximation to solutions of stochas-
tic models

• estimate parameters of DSGE models using either a maximum likelihood
or a Bayesian approach

• compute optimal policies in linear-quadratic models

1.3 Additional sources of help

While this User Guide tries to be as complete and thorough as possible, you
will certainly want to browse other material for help, as you learn about new
features, struggle with adapting examples to your own work, and yearn to ask
that one question whose answer seems to exist no-where. At your disposal,
you have the following additional sources of help:

• Reference Manual: this manual covers all Dynare commands, giving
a clear definition and explanation of usage for each. The User Guide
will often introduce you to a command in a rather loose manner (mainly
through examples); so reading corresponding command descriptions in
the Reference Manual is a good idea to cover all relevant details.

• Official online examples: the Dynare website includes other examples
- usually well documented - of .mod files covering models and method-
ologies introduced in recent papers.

• Open online examples: this page lists .mod files posted by users
covering a wide variety of examples.

• Dynare forums: this lively online discussion forum allows you to ask
your questions openly and read threads from others who might have run
into similar difficulties.

• Frequently Asked Questions (FAQ): this section of the Dynare site
emphasizes a few of the most popular questions in the forums.

• DSGE.net: this website, run my members of the Dynare team, is a
resource for all scholars working in the field of DSGE modeling. Besides
allowing you to stay up to date with the most recent papers and possi-
bly make new contacts, it conveniently lists conferences, workshops and
seminars that may be of interest.

http://www.cepremap.cnrs.fr/juillard/mambo/download/manual/index.html
http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=category&sectionid=11&id=96&Itemid=89
http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_forum&Itemid=95&page=viewforum&f=2&sid=10290a11eb7a48243971159f5b86f83e
http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_forum&Itemid=95&page=viewforum&f=1
http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=section&id=3&Itemid=40
http://www.dsge.net
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1.4 Nomenclature

To end this introduction and avoid confusion in what follows, it is worthwhile
to agree on a few definitions of terms. Many of these are shared with the
Reference Manual.

• Integer indicates an integer number.

• Double indicates a double precision number. The following syntaxes
are valid: 1.1e3, 1.1E3, 1.1E-3, 1.1d3, 1.1D3

• Expression indicates a mathematical expression valid in the underlying
language (e.g. Matlab).

• Variable name indicates a variable name. NOTE! These must start
with an alphabetical character and can only contain other alphabetical
characters and digits, as well as underscores ( ). All other characters,
including accents, and spaces, are forbidden.

• Parameter name indicates a parameter name which must follow the
same naming conventions as above.

• Filename indicates a file name valid in your operating system. Note
that Matlab requires that names of files or functions start with alpha-
betical characters; this concerns your Dynare .mod files.

• Command is an instruction to Dynare or other program when specified.

• Options or optional arguments for a command are listed in square
brackets [ ] unless otherwise noted. If, for instance, the option must
be specified in parenthesis in Dynare, it will show up in the Guide as
[(option)].

• Typewritten text indicates text as it should appear in Dynare code.

1.5 v4, what’s new and backward compatibility

The current version of Dynare - for which this guide is written - is version
4. With respect to version 3, this new version introduces several important
features, as well as improvements, optimizations of routines and bug fixes.
The major new features are the following:

• Analytical derivatives are now used everywhere (for instance, in the
Newton algorithm for deterministic models and in the linearizations nec-
essary to solve stochastic models). This increases computational speed
significantly. The drawback is that Dynare can now handle only a lim-
ited set of functions, although in nearly all economic applications this
should not be a constraint.
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• Variables and parameters are now kept in the order in which they are
declared whenever displayed and when used internally by Dynare. Recall
that in version 3, variables and parameters where at times in their order
of declaration and at times in alphabetical order. NOTE! This may
cause some problems of backward compatibility if you wrote programs
to run off Dynare v3 output.

• The names of many internal variables and the organization of output
variables has changed. These are enumerated in details in the relevant
chapters. The names of the files internally generated by Dynare have
also changed. (** more on this when explaining internal file structure -
TBD)

• The syntax for the external steady state file has changed. This is cov-
ered in more details in chapter 3, in section 3.6.3. NOTE! You will
unfortunately have to slightly amend any old steady state files you may
have written.

• Speed. Several large-scale improvements have been implemented to
speed up Dynare. This should be most noticeable when solving de-
terministic models, but also apparent in other functionality.



Chapter 2

Installing Dynare

2.1 Dynare versions

Three versions of Dynare exist: one for Matlab, one for Scilab and one for
Gauss. The first benefits from ongoing development and is the most popular.
Development of the Scilab version stopped after Dynare version 3.02 and that
for Gauss after Dynare version 1.2.

This User Guide will exclusively focus on the Matlab version of Dynare.
For the installation procedure for the Scilab or Gauss versions of the program,
please see the Reference Manual. Note, though, that the Dynare syntax re-
mains mostly unchanged across the Matlab, Scilab or Gauss versions, for those
features common to the three versions.

You may also be interested by another version of Dynare, developed in par-
allel: Dynare++. This is a standalone C++ version of Dynare specialized in
computing k-order approximations of dynamic stochastic general equilibrium
models. See the Dynare++ webpage for more information.

2.2 System requirements

Dynare can run on Windows, as well as Unix-like operating systems, such as
any Linux distribution, Solaris and, of course, Mac OS X. If you have ques-
tions about the support of a particular platform, feel free to write directly to
Michel Juillard (michel.juillard”AT”ens.fr) or visit the Dynare forums.

To run Dynare, it is recommended to allocate at least 256MB of RAM
to the platform running Dynare, although 512MB is preferred. Depending on
the type of computations required, like the very processor intensive Metropolis
Hastings algorithm, you may need up to 1GB of RAM to obtain acceptable

7

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=53&Itemid=86
http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_forum&Itemid=95&page=viewforum&f=1
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computational times.

2.3 Installing Dynare

2.3.1 Installing on Windows

The following assumes you have Matlab version 6.5.1 or later installed on your
Windows system.1 ** The current way to install Dynare version 4 may not yet
be on par with the procedure described below. If a discrepancy exists, please
follow downloading and installation instructions on the Dynare website.

1. Download the latest stable version of Dynare for Matlab (Windows)
from the Dynare website.

2. You will now have on your computer a .zip file which you should un-
zip. This will create a folder called, by default, Dynare and its version
number, for example: Dynare v4.x (where x stands for any subsequent
upgrades).

3. This directory contains several sub-directories, among which (i) matlab,
(ii) doc and (iii) examples.

4. Place the Dynare folder (Dynare v4.x in our example) in the c: directory
and note that location. The easiest is probably to put it in the root of
c: as in c:/dynare v4.x.

5. Start Matlab and use the menu File/Set-Path to add the path to the
Dynare matlab subdirectory. Following our example, this would corre-
spond to c:/dynare v4.x/matlab

6. Save these changes in Matlab and you’re ready to go.

2.4 Matlab particularities

A question often comes up: what special Matlab toolboxes are necessary to
run Dynare? In fact, no additional toolbox is necessary for running most of
Dynare, except maybe for optimal simple rules (see chapter 9), but even then
remedies exist (see the Dynare forums for discussions on this, or to ask your
particular question). But if you do have the ‘optimization toolbox’ installed,
you will have additional options for solving for the steady state (solve algo
option) and for searching for the posterior mode (mode compute option), both
of which are defined later.

1As of writing this Guide, Dynare is being developed on Matlab version 7. Nonetheless,
great care is taken not to introduce features that would not work with reasonably recent
versions of Matlab. However, Dynare requires at least the Matlab feature set of version
6.5.1, released September 22, 2003.

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_frontpage&Itemid=1
http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_forum&Itemid=95


Chapter 3

Solving DSGE models - basics

This chapter covers everything that leads to, and stems from, the solution
of DSGE models; a vast terrain. That is to say that the term “solution”
in the title of the chapter is used rather broadly. You may be interested in
simply finding the solution functions to a set of first order conditions stemming
from your model, but you may also want to go a bit further. Typically, you
may be interested in how this system behaves in response to shocks, whether
temporary or permanent. Likewise, you may want to explore how the system
comes back to its steady state or moves to a new one. This chapter covers all
these topics. But instead of skipping to the topic closest to your needs, we
recommend that you read this chapter chronologically, to learn basic Dynare
commands and the process of writing a proper .mod file - this will serve as a
base to carry out any of the above computations.

3.1 A fundamental distinction

Before speaking of Dynare, it is important to recognize a distinction in model
types. This distinction will appear throughout the chapter; in fact, it is so
fundamental, that we considered writing separate chapters altogether. But
the amount of common material - Dynare commands and syntax - is notable
and writing two chapters would have been overly repetitive. Enough suspense;
here is the important question: is your model stochastic or determinis-
tic?

The distinction hinges on whether future shocks are known. In de-
terministic models, the occurrence of all future shocks is known exactly at
the time of computing the model’s solution. In stochastic models, instead,
only the distribution of future shocks is known. Let’s consider a shock to a
model’s innovation only in period 1. In a deterministic context, agents will
take their decisions knowing that future values of the innovations will be zero
in all periods to come. In a stochastic context, agents will take their decisions

9
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knowing that the future value of innovations are random but will have zero
mean. This isn’t the same thing because of Jensen’s inequality. Of course, if
you consider only a first order linear approximation of the stochastic model,
or a linear model, the two cases become practically the same, due to certainty
equivalence. A second order approximation will instead lead to very different
results, as the variance of shocks will matter.

The solution method for each of these model types differs significantly. In
deterministic models, a highly accurate solution can be found by numerical
methods. The solution is nothing more than a series of numbers that match
a given set of equations. Intuitively, if an agent has perfect foresight, she can
specify today - at the time of making her decision - what each of her precise
actions will be in the future. In a stochastic environment, instead, the best
the agent can do is specify a decision, policy or feedback rule for the future:
what will her optimal actions be contingent on each possible realization of
shocks. In this case, we therefore search for a function satisfying the model’s
first order conditions. To complicate things, this function may be non-linear
and thus needs to be approximated. In control theory, solutions to determin-
istic models are usually called “closed loop” solutions, and those to stochastic
models are referred to as “open loop”.

Because this distinction will resurface again and again throughout the
chapter, but also because it has been a source of significant confusion in the
past, the following gives some additional details.

3.1.1 NOTE! Deterministic vs stochastic models

Deterministic models have the following characteristics:

1. As the DSGE (read, “stochastic”, i.e. not deterministic!) literature
has gained attention in economics, deterministic models have become
somewhat rare. Examples include OLG models without aggregate un-
certainty.

2. These models are usually introduced to study the impact of a change in
regime, as in the introduction of a new tax, for instance.

3. Models assume full information, perfect foresight and no uncertainty
around shocks.

4. Shocks can hit the economy today or at any time in the future, in which
case they would be expected with perfect foresight. They can also last
one or several periods.

5. Most often, though, models introduce a positive shock today and zero
shocks thereafter (with certainty).
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6. The solution does not require linearization, in fact, it doesn’t even really
need a steady state. Instead, it involves numerical simulation to find the
exact paths of endogenous variables that meet the model’s first order
conditions and shock structure.

7. This solution method can therefore be useful when the economy is far
away from steady state (when linearization offers a poor approximation).

Stochastic models, instead, have the following characteristics:

1. These types of models tend to be more popular in the literature. Exam-
ples include most RBC models, or new keynesian monetary models.

2. In these models, shocks hit today (with a surprise), but thereafter their
expected value is zero. Expected future shocks, or permanent changes
in the exogenous variables cannot be handled due to the use of Taylor
approximations around a steady state.

3. Note that when these models are linearized to the first order, agents
behave as if future shocks where equal to zero (since their expectation is
null), which is the certainty equivalence property. This is an often
overlooked point in the literature which misleads readers in supposing
their models may be deterministic.

3.2 Introducing an example

The goal of this first section is to introduce a simple example. Future sections
will aim to code this example into Dynare and analyze its salient features
under the influence of shocks - both in a stochastic and a deterministic envi-
ronment. Note that as a general rule, the examples in the basic chapters, 3
and 5, are kept as bare as possible, with just enough features to help illustrate
Dynare commands and functionalities. More complex examples are instead
presented in the advanced chapters.

The model introduced here is a basic RBC model with monopolistic com-
petition, used widely in the literature. Its particular notation adopted below
is drawn mostly from notes available on Jesus Fernandez-Villaverde’s very
instructive website; this is a good place to look for additional information
on any of the following model set-up and discussion. Note throughout this
model description that the use of expectation signs is really only relevant
in a stochastic setting, as per the earlier discussion. We will none-the-less
illustrate both the stochastic and the deterministic settings on the basis of
this example. Thus, when thinking of the latter, you’ll have to use a bit of
imagination (on top of that needed to think you have perfect foresight!) to
ignore the expectation signs.

http://www.econ.upenn.edu/~jesusfv/
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Households maximize utility over consumption, ct and leisure, 1−lt, where
lt is labor input, according to the following utility function

Et

∞∑

t=0

β [log ct + ψ log(1− lt)]

and subject to the following budget constraint

ct + kt+1 = wtlt + rtkt + (1− δ)kt, ∀t > 0

where kt is capital stock, wt real wages, rt real interest rates or cost of capital
and δ the depreciation rate.

The above equation can be seen as an accounting identity, with total ex-
penditures on the left hand side and revenues - including the liquidation value
of the capital stock - on the right hand side. Alternatively, with a little more
imagination, the equation can also be interpreted as a capital accumulation
equation after bringing ct to the right hand side and noticing that wtlt + rtkt,
total payments to factors, equals yt, or aggregate output, by the zero profit
condition. As a consequence, if we define investment as it = yt− ct, we obtain
the intuitive result that it = kt+1 − (1 − δ)kt, or that investment replenishes
the capital stock thereby countering the effects of depreciation. In any given
period, the consumer therefore faces a tradeoff between consuming and in-
vesting in order to increase the capital stock and consuming more in following
periods (as we will see later, production depends on capital).

Maximization of the household problem with respect to consumption,
leisure and capital stock, yields the Euler equation in consumption, capturing
the intertemporal tradeoff mentioned above, and the labor supply equation
linking labor positively to wages and negatively to consumption (the wealth-
ier, the more leisure due to the decreasing marginal utility of consumption).
These equation are

1
ct

= βEt

[
1

ct+1
(1 + rt+1 − δ)

]

and
ψ

ct

1− lt
= wt

The firm side of the problem is slightly more involved, due to monopolistic
competition, but is presented below in the simplest possible terms, with a
little hand-waiving involved, as the derivations are relatively standard.

There are two ways to introduce monopolistic competition. We can ei-
ther assume that firms sell differentiated varieties of a good to consumers who
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aggregate these according to a CES index. Or we can postulate that there
is a continuum of intermediate producers with market power who each sell
a different variety to a competitive final goods producer whose production
function is a CES aggregate of intermediate varieties.

If we follow the second route, the final goods producer chooses his or her
optimal demand for each variety, yielding the Dixit-Stiglitz downward sloping
demand curve. Intermediate producers, instead, face a two pronged decision:
how much labor and capital to employ given these factors’ perfectly competi-
tive prices and how to price the variety they produce.

Production of intermediate goods follows a CRS production function de-
fined as

yit = kα
it(e

zt lit)1−α

where the i subscript stands for firm i of a continuum of firms between zero
and one and where α is the capital elasticity in the production function, with
0 < α < 1. Also, zt captures technology which evolves according to

zt = ρzt−1 + et

where ρ is a parameter capturing the persistence of technological progress and
et ∼ N (0,σ).

The solution to the sourcing problem yields an optimal capital to labor
ratio, or relationship between payments to factors:

kitrt =
α

1− α
wtlit

The solution to the pricing problem, instead, yields the well-known con-
stant markup pricing condition of monopolistic competition:

pit =
ε

ε− 1
mctpt

where pit is firm i’s specific price, mct is real marginal cost and pt is the aggre-
gate CES price or average price. An additional step simplifies this expression:
symmetric firms implies that all firms charge the same price and thus pit = pt;
we therefore have: mct = (ε− 1)/ε

But what are marginal costs equal to? To find the answer, we combine the
optimal capital to labor ratio into the production function and take advantage
of its CRS property to solve for the amount of labor or capital required to
produce one unit of output. The real cost of using this amount of any one
factor is given by wtlit + rtkit where we substitute out the payments to the
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other factor using again the optimal capital to labor ratio. When solving for
labor, for instance, we obtain

mct =
(

1
1− α

)1−α (
1
α

)α 1
At

w1−α
t rα

t

which does not depend on i; it is thus the same for all firms.

Interestingly, the above can be worked out, by using the optimal capital
to labor ratio, to yield wt[(1 − α)yit/lit]−1, or wt

∂lit
∂yit

, which is the definition
of marginal cost: the cost in terms of labor input of producing an additional
unit of output. This should not be a surprise since the optimal capital to
labor ratio follows from the maximization of the production function (minus
real costs) with respect to its factors.

Combining this result for marginal cost, as well as its counterpart in terms
of capital, with the optimal pricing condition yields the final two important
equations of our model

wt = (1− α)
yit

lit

(ε− 1)
ε

and
rt = α

yit

kit

(ε− 1)
ε

To end, we aggregate the production of each individual firm to find an
aggregate production function. On the supply side, we factor out the capital
to labor ratio, kt/lt, which is the same for all firms and thus does not depend
on i. On the other side, we have the Dixit-Stiglitz demand for each variety. By
equating the two and integrating both side, and noting that price dispersion
is null - or that, as hinted earlier, pit = pt - we obtain aggregate production

yt = Atk
α
t l1−α

t

which can be shown is equal to the aggregate amount of varieties bought by
the final good producer (according to a CES aggregation index) and, in turn,
equal to the aggregate output of final good, itself equal to household con-
sumption. Note, to close, that because the ratio of output to each factor is
the same for each intermediate firm and that firm specific as well as aggre-
gate production is CRS, we can rewrite the above two equations for wt and rt

without the i subscripts on the right hand side.

This ends the exposition of the example. Now, let’s roll up our sleeves and
see how we can input the model into Dynare and actually test how the model
will respond to shocks.
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3.3 Dynare .mod file structure

Input into Dynare involves the .mod file, as mentioned loosely in the intro-
duction of this Guide. The .mod file can be written in any editor, external or
internal to Matlab. It will then be read by Matlab by first navigating within
Matlab to the directory where the .mod file is stored and then by typing in
the Matlab command line Dynare filename.mod; (although actually typing
the extension .mod is not necessary). But before we get into executing a .mod
file, let’s start by writing one!

It is convenient to think of the .mod file as containing four distinct blocks,
illustrated in figure 3.3:

• preamble: lists variables and parameters

• model: spells out the model

• steady state or initial value: gives indications to find the steady state
of a model, or the starting point for simulations or impulse response
functions based on the model’s solution.

• shocks: defines the shocks to the system

• computation: instructs Dynare to undertake specific operations (e.g.
forecasting, estimating impulse response functions)

Our exposition below will structured according to each of these blocks.

3.4 Filling out the preamble

The preamble generally involves three commands that tell Dynare what are
the model’s variables, which are endogenous and what are the parameters.
The commands are:

• var starts the list of endogenous variables, to be separated by commas.

• varexo starts the list of exogenous variables that will be shocked.

• parameters starts the list of parameters and assigns values to each.

In the case of our example, let’s differentiate between the stochastic and de-
terministic cases. First, we lay these out, then we discuss them.
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Figure 3.1: The .mod file contains five logically distinct parts.

3.4.1 The deterministic case

The model is inherited exactly as specified in the earlier description, except
that we no longer need the et variable, as we can make zt directly exogenous.
Thus, the preamble would look like:

var y c k i l y l w r;
varexo z;
parameters beta psi delta alpha sigma epsilon;
alpha = 0.33;
beta = 0.99;
delta = 0.023;
psi = 1.75;
sigma = (0.007/(1-alpha));
epsilon = 10;

3.4.2 The stochastic case

In this case, we go back to considering the law of motion for technology, con-
sisting of an exogenous shock, et. With respect to the above, we therefore
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adjust the list of endogenous and exogenous variables, and add the parameter
ρ. Here’s what the preamble would look like:

var y c k i l y l w r z;
varexo e;
parameters beta psi delta alpha rho sigma epsilon;
alpha = 0.33;
beta = 0.99;
delta = 0.023;
psi = 1.75;
rho = 0.95;
sigma = (0.007/(1-alpha));
epsilon = 10;

3.4.3 Comments on your first lines of Dynare code

As you can tell, writing a .mod file is really quite straightforward. Two quick
comments:

NOTE! Remember that each instruction of the .mod file must be termi-
nated by a semicolon (;), although a single instruction can span two lines if
you need extra space (just don’t put a semicolon at the end of the first line).

TIP! You can also comment out any line by starting the line with two
forward slashes (//), or comment out an entire section by starting the section
with /* and ending with */. For example:

var y c k i l y l w r z;
varexo e;
parameters beta psi delta
alpha rho sigma epsilon;
// the above instruction reads over two lines
/*
the following section lists
several parameters which were
calibrated by my co-author. Ask
her all the difficult questions!
*/
alpha = 0.33;
beta = 0.99;
delta = 0.023;
psi = 1.75;
rho = 0.95;
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sigma = (0.007/(1-alpha));
epsilon = 10;

3.5 Specifying the model

3.5.1 Model in Dynare notation

One of the beauties of Dynare is that you can input your model’s equa-
tions naturally, almost as if you were writing them in an academic paper.
This greatly facilitates the sharing of your Dynare files, as your colleagues will
be able to understand your code in no-time. There are just a few conventions
to follow. Let’s first have a look at our model in Dynare notation, and
then go through the various Dynare input conventions. What you can already
try to do is glance at the model block below and see if you can recognize the
equations from the earlier example. See how easy it is to read Dynare code?

model;
(1/c) = beta*(1/c(+1))*(1+r(+1)-delta);
psi*c/(1-l) = w;
c+i = y;
y = (k(-1)̂alpha)*(exp(z)*l)̂(1-alpha);
w = y*((epsilon-1)/epsilon)*(1-alpha)/l;
r = y*((epsilon-1)/epsilon)*alpha/k(-1);
i = k-(1-delta)*k(-1);
y l = y/l;
z = rho*z(-1)+e;
end;

Just in case you need a hint or two to recognize these equations, here’s
a brief description: the first equation is the Euler equation in consumption.
The second the labor supply function. The third the accounting identity. The
fourth is the production function. The fifth and sixth are the marginal cost
equal to markup equations. The seventh is the investment equality. The
eighth an identity that may be useful and the last the equation of motion of
technology.

NOTE! that the above model specification corresponds to the stochastic
case; indeed, notice that the law of motion for technology is included, as per
our discussion of the preamble. The corresponding model for the determin-
istic casce would simply loose the last equation.
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3.5.2 General conventions

The above example illustrates the use of a few important commands and
conventions to translate a model into a Dynare-readable .mod file.

• The first thing to notice, is that the model block of the .mod file begins
with the command model and ends with the command end.

• Second, in between, there need to be as many equations as you declared
endogenous variables (this is actually one of the first things that Dynare
checks; it will immediately let you know if there are any problems).

• Third, as in the preamble and everywhere along the .mod file, each line
of instruction ends with a semicolon (except when a line is too long and
you want to break it across two lines. This is unlike Matlab where if you
break a line you need to add . . . ).

• Fourth, equations are entered one after the other; no matrix representa-
tion is necessary. Note that variable and parameter names used in the
model block must be the same as those declared in the preamble; TIP!
remember that variable and parameter names are case sensitive.

3.5.3 Notational conventions

• Variables entering the system with a time t subscript are written plainly.
For example, xt would be written x.

• Variables entering the system with a time t − n subscript are written
with (−n) following them. For example, xt−2 would be written x(−2)
(incidentally, this would count as two backward looking variables).

• In the same way, variables entering the system with a time t+n subscript
are written with (+n) following them. For example, xt+2 would be
written x(+2). Writing x(2) is also allowed, but this notation makes it
slightly harder to count by hand the number of forward looking variables
(a useful measure to check); more on this below . . .

3.5.4 Timing conventions

• In Dynare, the timing of each variable reflects when that variable is de-
cided. For instance, our capital stock is not decided today, but yesterday
(recall that it is a function of yesterday’s investment and capital stock);
it is what we call in the jargon a predetermined variable. Thus, even-
though in the example presented above we wrote kt+1 = it + (1 − δ)kt,
as in many papers, we would translate this equation into Dynare as
k=i+(1-delta)*k(-1).
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• As another example, consider that in some wage negociation models,
wages used during a period are set the period before. Thus, in the
equation for wages, you can write wage in period t (when they are set),
but in the labor demand equation, wages should appear with a one
period lag.

• A slightly more roundabout way to explain the same thing is that for
stock variables, you must use a “stock at the end of the period” concept.
It is investment during period t that sets stock at the end of period t.
Be careful, a lot of papers use the “stock at the beginning of the period”
convention, as we did (on purpose to highlight this distinction!) in the
setup of the example model above.

3.5.5 Conventions specifying non-predetermined variables

• A (+1) next to a variable tells Dynare to count the occurrence of that
variable as a jumper or forward-looking or non-predetermined variable.

• Blanchard-Kahn conditions are met only if the number of non-predetermined
variables equals the number of eigenvalues greater than one. If this con-
dition is not met, Dynare will put up a warning.

• Note that a variable may occur both as predetermined and non-predetermined.
For instance, consumption could appear with a lead in the Euler equa-
tion, but also with a lag in a habit formation equation, if you had one.
In this case, the second order difference equation would have two eigen-
values, one needing to be greater and the other smaller than one for
stability.

3.5.6 Linear and log-linearized models

There are two other variants of the system’s equations which Dynare accom-
modates. First, the linear model and second, the model in exp-logs. In
the first case, all that is necessary is to write the term (linear) next to the
command model. Our example, with just the equation for yl for illustration,
would look like:

model (linear);
yy l=yy - ll;
end;

where repeating a letter for a variable means difference from steady state.

Otherwise, you may be interested to have Dynare take Taylor series ex-
pansions in logs rather than in levels; this turns out to be a very useful option
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when estimating models with unit roots, as we will see in chapter 5. If so,
simply rewrite your equations by taking the exponential and logarithm of each
variable. The Dynare input convention makes this very easy to do. Our ex-
ample would need to be re-written as follows (just shown for the first two
equations)

model;
(1/exp(cc)) = beta*(1/exp(cc(+1)))*(1+exp(rr(+1))-delta);
psi*exp(cc)/(1-exp(ll)) = exp(ww);
end;

where, this time, repeating a letter for a variable means log of that variable,
so that the level of a variable is given by exp(repeatedvariable).

3.6 Specifying steady states and/or initial values

Material in this section has created much confusion in the past. But with
some attention to the explanations below, you should get through unscathed.
Let’s start by emphasizing the uses of this section of the .mod file. First, recall
that stochastic models need to be linearized. Thus, they need to have a steady
state. One of the functions of this section is indeed to provide these steady
state values, or approximations of values. Second, irrespective of whether
you’re working with a stochastic or deterministic model, you may be inter-
ested to start your simulations or impulse response functions from either a
steady state, or another given point. This section is also useful to specify this
starting value. Let’s see in more details how all this works.

In passing, though, note that the relevant commands in this section are
initval, endval or, more rarely, histval which is covered only in the Ref-
erence Manual. The first two are instead covered in what follows.

3.6.1 Stochastic models and steady states

In a stochastic setting, your model will need to be linearized before it is solved.
To do so, Dynare needs to know your model’s steady state (more details on
finding a steady state, as well as tips to do so more efficiently, are provided in
section 3.6.3 below). You can either enter exact steady state values into your
.mod file, or just approximations and let Dynare find the exact steady state
(which it will do using numerical methods based on your approximations). In
either case, these values are entered in the initval block, as in the following
fashion:

initval;

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
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k = 9;
c = 0.7;
l = 0.3;
w = 2.0;
r = 0;
z = 0;
e = 0;
end;

Then, by using the command steady, you can control whether you want to
start your simulations or impulse response functions from the steady state, or
from the exact values you specified in the initval block. Adding steady just
after your initval block will instruct Dynare to consider your initial values
as mere approximations and start simulations or impulse response functions
from the exact steady state. On the contrary, if you don’t add the command
steady, your simulations or impulse response functions will start from your
initial values, even if Dynare will have calculated your model’s exact steady
state for the purpose of linearization.

For the case in which you would like simulations and impulse response
functions to begin at the steady state, the above block would be expanded to
yield:

initval;
k = 9;
c = 0.7;
l = 0.3;
w = 2.0;
r = 0;
z = 0;
e = 0;
end;

steady;

TIP! If you’re dealing with a stochastic model, remember that its lin-
ear approximation is good only in the vicinity of the steady state, thus it is
strongly recommended that you start your simulations from a steady state;
this means either using the command steady or entering exact steady state
values.
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3.6.2 Deterministic models and initial values

Deterministic models do not need to be linearized in order to be solved. Thus,
technically, you do not need to provide a steady state for these model. But
practically, most researchers are still interested to see how a model reacts to
shocks when originally in steady state. In the deterministic case, the initval
block serves very similar functions as described above. If you wanted to shock
your model starting from a steady state value, you would enter approximate
(or exact) steady state values in the initval block, followed by the command
steady. Otherwise, if you wanted to begin your solution path from an arbi-
trary point, you would enter those values in your initval block and not use
the steady command. An illustration of the initval block in the determin-
istic case appears further below.

3.6.3 Finding a steady state

The difficulty in the above, of course, is calculating actual steady state val-
ues. Doing so borders on a form of art, and luck is unfortunately part of the
equation. Yet, the following TIPS! may help.

As mentioned above, Dynare can help in finding your model’s steady state
by calling the appropriate Matlab functions. But it is usually only successful
if the initial values you entered are close to the true steady state. If you have
trouble finding the steady state of your model, you can begin by playing with
the options following the steady command. These are:

• solve algo = 0: uses Matlab Optimization Toolbox FSOLVE

• solve algo = 1: uses Dynare’s own nonlinear equation solver

• solve algo = 2: splits the model into recursive blocks and solves each
block in turn.

• solve algo = 3: uses the Sims solver. This is the default option if none
are specified.

For complicated models, finding suitable initial values for the endogenous
variables is the trickiest part of finding the equilibrium of that model. Often,
it is better to start with a smaller model and add new variables one by one.

But even for simpler models, you may still run into difficulties in finding
your steady state. If so, another option is to enter your model in linear
terms. In this case, variables would be expressed in percent deviations from
steady state. Thus, their initial values would all be zero. Unfortunately, if
any of your original (non-linear) equations involve sums (a likely fact), your
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linearized equations will include ratios of steady state values, which you would
still need to calculate. Yet, you may be left needing to calculate fewer steady
state values than in the original, non-linear, model.

Alternatively, you could also use an external program to calculate ex-
act steady state values. For instance, you could write an external Maple
file and then enter the steady state solution by hand in Dynare. But of
course, this procedure could be time consuming and bothersome, especially
if you want to alter parameter values (and thus steady states) to undertake
robustness checks.

The alternative is to write a Matlab program to find your model’s steady
state. Doing so has the clear advantages of being able to incorporate your
Matlab program directly into your .mod file so that running loops with differ-
ent parameter values, for instance, becomes seamless. NOTE! When doing so,
your matlab (.m) file should have the same name as your .mod file, followed
by steadystate For instance, if your .mod file is called example.mod, your
Matlab file should be called example steadystate.m and should be saved in
the same directory as your .mod file. Dynare will automatically check the di-
rectory where you’ve saved your .mod file to see if such a Matlab file exists. If
so, it will use that file to find steady state values regardless of whether you’ve
provided initial values in your .mod file.

Because Matlab does not work with analytical expressions, though (unless
you’re working with a particular toolbox), you need to do a little work to write
your steady state program. It is not enough to simply input the equations
as you’ve written them in your .mod file and ask Matlab to solve the system.
You will instead need to write your steady state program as if you were solv-
ing for the steady state by hand. That is, you need to input your expressions
sequentially, whereby each left-hand side variable is written in terms of known
parameters or variables already solved in the lines above. For example, the
steady state file corresponding to the above example, in the stochastic case,
would be: (** example file to be added shortly)

3.6.4 Checking system stability

TIP! A handy command that you can add after the initval or endval block
(following the steady command if you decide to add one) is the check com-
mand. This computes and displays the eigenvalues of your system
which are used in the solution method. As mentioned earlier, a necessary con-
dition for the uniqueness of a stable equilibrium in the neighborhood of the
steady state is that there are as many eigenvalues larger than one in modulus
as there are forward looking variables in the system. If this condition is not
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met, Dynare will tell you that the Blanchard-Kahn conditions are not satisfied
(whether or not you insert the check command).

3.7 Adding shocks

3.7.1 Deterministic models - temporary shocks

When working with a deterministic model, you have the choice of introducing
both temporary and permanent shocks. The distinction is that under a tem-
porary shock, the model eventually comes back to steady state, while under
a permanent shock, the model reaches a new steady state. In both cases,
though, the shocks are entirely expected, as explained in our original discus-
sion on stochastic and deterministic models.

To work with a temporary shock, you are free to set the duration and
level of the shock. To specify a shock that lasts 9 periods on zt, for instance,
you would write:

shocks;
var z;
periods 1:9;
values 0.1;
end;

Given the above instructions, Dynare would replace the value of zt spec-
ified in the initval block with the value of 0.1 entered above. If variables
were in logs, this would have corresponded to a 10% shock. Note that you
can also use the mshocks command which multiplies the initial value of an
exogenous variable by the mshocks value. Finally, note that we could have
entered future periods in the shocks block, such as periods 5:10, in order to
study the anticipatory behavior of agents in response to future shocks.

3.7.2 Deterministic models - permanent shocks

To study the effects of a permanent shock hitting the economy today, such
as a structural change in your model, you would not specify actual “shocks”,
but would simply tell the system to which (steady state) values you would like
it to move and let Dynare calculate the transition path. To do so, you would
use the endval block following the usual initval block. For instance, you
may specify all values to remain common between the two blocks, except for
the value of technology which you may presume changes permanently. The
corresponding instructions would be:
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initval;
k = 9;
c = 0.7;
l = 0.3;
w = 2.0;
r = 0;
z = 0;
end;
steady;

endval;
k = 9;
c = 0.7;
l = 0.3;
w = 2.0;
r = 0;
z = 0.1;
end;
steady;

where steady can also be added to the endval block, and serves the same
functionality as described earlier (namely, of telling Dynare to start and/ or
end at a steady state close to the values you entered. If you do not use steady
after endval, and the latter does not list exact steady state values, you may
impose on your system that it does not return to steady state. This is unusual.
In this case, your problem would become a so-called two boundary problem,
which, when solved, requires that the path of your endogenous variables pass
through the steady state closest to your endval values). In our example, we
make use of the second steady since the actual terminal steady state values
are bound to be somewhat different from those entered above, which are noth-
ing but the initial values for all variables except for technology.

In the above example, the value of technology would move to 0.1 in pe-
riod 1 (tomorrow) and thereafter. But of course, the other variables - the
endogenous variables - will take longer to reach their new steady state values.
TIP! If you instead wanted to study the effects of a permanent but future
shock (anticipated as usual), you would have to add a shocks block after the
endval block to “undo” the first several periods of the permanent shock. For
instance, suppose you wanted the value of technology to move to 0.1, but only
in period 10. Then you would follow the above endval block with:

shocks;
var z;
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periods 1:9;
values 0;
end;

3.7.3 Stochastic models

Recall from our earlier description of stochastic models that shocks are only
allowed to be temporary. A permanent shock cannot be accommodated due to
the need to stationarize the model around a steady state. Furthermore, shocks
can only hit the system today, as the expectation of future shocks must be
zero. With that in mind, we can however make the effect of the shock propa-
gate slowly throughout the economy by introducing a “latent shock variable”
such as et in our example, that affects the model’s true exogenous variable, zt

in our example, which is itself an AR(1), exactly as in the model we introduced
from the outset. In that case, though, we would declare zt as an endogenous
variable and et as an exogenous variable, as we did in the preamble of the
.mod file in section 3.4. Supposing we wanted to add a shock with variance
σ2, where σ is determined in the preamble block, we would write:

shocks;
var e = sigma ̂ 2;
end;

TIP! You can actually mix in deterministic shocks in stochastic models
by using the commands varexo det and listing some shocks as lasting more
than one period in the shocks block. For information on how to do so, please
see the Reference Manual. This can be particularly useful if you’re studying
the effects of anticipated shocks in a stochastic model. For instance, you may
be interested in what happens to your monetary model if agents began ex-
pecting higher inflation, or a depreciation of your currency.

3.8 Selecting a computation

So far, we have written an instructive .mod file, but what should Dynare do
with it? What are we interested in? In most cases, it will be impulse re-
sponse functions (IRFs) due to the external shocks. Let’s see which are the
appropriate commands to give to Dynare. Again, we will distinguish between
deterministic and stochastic models.

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
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3.8.1 For deterministic models

In the deterministic case, all you need to do is add the command simul
at the bottom of your .mod file. Note that the command takes the option
[ (periods=INTEGER) ] The command simul triggers the computation a
numerical simulation of the trajectory of the model’s solution for the number
of periods set in the option. To do so, it uses a Newton method to solve
simultaneously all the equations for every period (see Juillard (1996) for de-
tails). Note that unless you use the endval command, the algorithm makes
the simplifying assumption that the system is back to equilibrium after the
specified number of periods. Thus, you must specify a large enough number
of periods such that increasing it further doesn’t change the simulation for
all practical purpose. In the case of a temporary shock, for instance, the tra-
jectory will basicaly describe how the system gets back to equilibrium after
being perturbed from the shocks you entered.

3.8.2 For stochastic models

In the more common case of stochastic models, the command stoch simul is
appropriate. This command instructs Dynare to compute a Taylor approxi-
mation of the decision and transition functions for the model (the equations
listing current values of the endogenous variables of the model as a func-
tion of the previous state of the model and current shocks), impulse response
functions and various descriptive statistics (moments, variance decomposition,
correlation and autocorrelation coefficients).1

Impulse response functions are the expected future path of the endogenous
variables conditional on a shock in period 1 of one standard deviation.TIP!
If you linearize your model up to a first order, impulse response functions
are simply the algebraic forward iteration of your model’s policy or decision
rule. If you instead linearize to a second order, impulse response functions
will be the result of actual Monte Carlo simulations of future shocks. This is
because in second order linear equations, you will have cross terms involving
the shocks, so that the effects of the shocks depend on the state of the system
when the shocks hit. Thus, it is impossible to get algebraic average values
of all future shocks and their impact. The technique is instead to pull fu-
ture shocks from their distribution and see how they impact your system, and
repeat this procedure a multitude of times in order to draw out an average
response. That said, note that future shocks will not have a significant impact

1For correlated shocks, the variance decomposition is computed as in the VAR literature
through a Cholesky decomposition of the covariance matrix of the exogenous variables.
When the shocks are correlated, the variance decomposition depends upon the order of the
variables in the varexo command.
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on your results, since they get averaged between each Monte Carlo trial and
in the limit should sum to zero, given their mean of zero. Note that in the
case of a second order approximation, Dynare will return the actual sample
moments from the simulations. For first order linearizations, Dynare will in-
stead report theoretical moments. In both cases, the return to steady state
is asymptotic, TIP! thus you should make sure to specify sufficient periods
in your IRFs such that you actually see your graphs return to steady state.
Details on implementing this appear below.

If you’re interested to peer a little further into what exactly is going on
behind the scenes of Dynare’s computations, have a look at Chapter 7. Here
instead, we focus on the application of the command and reproduce below the
most common options that can be added to stoch simul. For a complete list
of options, please see the Reference Manual.

Options following the stoch simul command:

• ar = INTEGER: Order of autocorrelation coefficients to compute and
to print (default = 5).

• dr algo = 0 or 1: specifies the algorithm used for computing the quadratic
approximation of the decision rules: 0 uses a pure perturbation approach
as in Schmitt-Grohe and Uribe (2004) (default) and 1 moves the point
around which the Taylor expansion is computed toward the means of
the distribution as in Collard and Juillard (2001b).

• drop = INTEGER: number of points dropped at the beginning of sim-
ulation before computing the summary statistics (default = 100).

• hp filter = INTEGER: uses HP filter with lambda = INTEGER before
computing moments (default: no filter).

• hp ngrid = INTEGER: number of points in the grid for the discreet In-
verse Fast Fourier Transform used in the HP filter computation. It may
be necessary to increase it for highly autocorrelated processes (default
= 512).

• irf = INTEGER: number of periods on which to compute the IRFs
(default = 40). Setting IRF=0, suppresses the plotting of IRF’s.

• relative irf requests the computation of normalized IRFs in percentage
of the standard error of each shock.

• nocorr: doesn’t print the correlation matrix (printing is the default).

• nofunctions: doesn’t print the coefficients of the approximated solution
(printing is the default).

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
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• nomoments: doesn’t print moments of the endogenous variables (print-
ing them is the default).

• noprint: cancel any printing; usefull for loops.

• order = 1 or 2 : order of Taylor approximation (default = 2), unless
you’re working with a linear model in which case the order is automati-
cally set to 1.

• periods = INTEGER: specifies the number of periods to use in simu-
lations (default = 0). TIP! A simulation is similar to running impulse
response functions with a model linearized to the second order, in the
way that both sample shocks from their distribution to see how the
system reacts, but a simulation only repeats the process once, whereas
impulse response functions run a multitude of Monte Carlo trials in order
to get an average response of your system.

• qz criterium = INTEGER or DOUBLE: value used to split stable from
unstable eigenvalues in reordering the Generalized Schur decomposition
used for solving 1st order problems (default = 1.000001).

• replic = INTEGER: number of simulated series used to compute the
IRFs (default = 1 if order = 1, and 50 otherwise).

• simul seed = INTEGER or DOUBLE or (EXPRESSION): specifies a
seed for the random number generator so as to obtain the same random
sample at each run of the program. Otherwise a different sample is
used for each run (default: seed not specified). If you linearized to a
second order, Dynare will actually undertake Monte Carlo simulations
to generate moments of your variables. Because of the simulation, results
are bound to be slightly different each time you run your program, except
if you fix the seed for the random number generator. TIP! If you do
decide to fix the seed, you should at least try to run your program
without using simul seed, just to check the robustness of your results.

Going back to our good old example, suppose we were interested in print-
ing all the various measures of moments of our variables, want to see impulse
response functions for all variables, are basically happy with all default op-
tions and want to carry out simulations over a good number of periods. We
would then end our .mod file with the following command:

stoch simul(periods=2100);
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3.9 The complete .mod file

For completion’s sake, and for the pleasure of seeing our work bear its fruits,
here are the complete .mod files corresponding to our example for the de-
terministic and stochastic case. You can find the corresponding files in the
models folder under UserGuide in your installation of Dynare. The files are
called RBC Monop JFV.mod for stochastic models and RBC Monop Det.mod for
deterministic models.

3.9.1 The stochastic model

var y c k i l y l w r z;
varexo e;
parameters beta psi delta alpha rho sigma epsilon;
alpha = 0.33;
beta = 0.99;
delta = 0.023;
psi = 1.75;
rho = 0.95;
sigma = (0.007(1-alpha));
epsilon = 10;

model;
(1/c) = beta*(1/c(+1))*(1+r(+1)-delta);
psi*c/(1-l) = w;
c+i = y;
y = (k(-1)̂alpha)*(exp(z)*l)̂(1-alpha);
w = y*((epsilon-1)/epsilon)*(1-alpha)/l;
r = y*((epsilon-1)/epsilon)*alpha/k(-1);
i = k-(1-delta)*k(-1);
y l = y/l;
z = rho*z(-1)+e;
end;

initval;
k = 9;
c = 0.7;
l = 0.3;
w = 2.0;
r = 0;
z = 0;
e = 0;
end;
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steady;

check;

shocks;
var e = sigma ̂ 2;
end;

stoch simul(periods=2100);

3.9.2 The deterministic model (case of temporary shock)

var y c k i l y l w r ;
varexo z;
parameters beta psi delta alpha sigma epsilon;
alpha = 0.33;
beta = 0.99;
delta = 0.023;
psi = 1.75;
sigma = (0.007(1-alpha));
epsilon = 10;

model;
(1/c) = beta*(1/c(+1))*(1+r(+1)-delta);
psi*c/(1-l) = w;
c+i = y;
y = (k(-1)̂alpha)*(exp(z)*l)̂(1-alpha);
w = y*((epsilon-1)/epsilon)*(1-alpha)/l;
r = y*((epsilon-1)/epsilon)*alpha/k(-1);
i = k-(1-delta)*k(-1);
y l = y/l;
end;

initval;
k = 9;
c = 0.7;
l = 0.3;
w = 2.0;
r = 0;
z = 0;
end;

steady;
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check;

shocks;
var z; periods 1:9;
values 0.1;
end;

simul(periods=2100);

3.10 File execution and results

To see this all come to life, let’s run our .mod file, which is conveniently
installed by default in the Dynare “examples” directory (the .mod file cor-
responding to the stochastic model is called RBC Monop JFV.mod and that
corresponding to the deterministic model is called RBC Monop Det.mod). (**
note, this may not be the case when testing the beta version of Matlab version
4)

To run a .mod file, navigate within Matlab to the directory where the
example .mod files are stored. You can do this by clicking in the “current di-
rectory” window of Matlab, or typing the path directly in the top white field
of Matlab. Once there, all you need to do is place your cursor in the Matlab
command window and type, for instance, dynare ExSolStoch; to execute
your .mod file.

Running these .mod files should take at most 30 seconds. As a result, you
should get two forms of output - tabular in the Matlab command window and
graphical in one or more pop-up windows. Let’s review these results.

3.10.1 Results - stochastic models

The tabular results can be summarized as follows:

1. Model summary: a count of the various variable types in your model
(endogenous, jumpers, etc...).

2. Eigenvalues should be displayed, and you should see a confirmation of
the Blanchard-Kahn conditions if you used the command check in your
.mod file.
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3. Matrix of covariance of exogenous shocks: this should square with
the values of the shock variances and co-variances you provided in the
.mod file.

4. Policy and transition functions: Solving the rational exectation
model, Et[f(yt+1, yt, yt−1, ut)] = 0 , means finding an unkown function,
yt = g(yt−1, ut) that could be plugged into the original model and satisfy
the implied restrictions (the first order conditions). A first order approx-
imation of this function can be written as yt = ȳ + gyŷt−1 + guut, with
ŷt = yt − ȳ and ȳ being the steadystate value of y, and where gx is the
partial derivative of the g function with respect to variable x. In other
words, the function g is a time recursive (approximated) representation
of the model that can generate timeseries that will approximatively sat-
isfy the rational expectation hypothesis contained in the original model.
In Dynare, the table “Policy and Transition function” contains the el-
ements of gy and gu. Details on the policy and transition function can
be found in Chapter 6.

5. Moments of simulated variables: up to the fourth moments.

6. Correlation of simulated variables: these are the contemporaneous
correlations, presented in a table.

7. Autocorrelation of simulated variables: up to the fifth lag, as spec-
ified in the options of stoch simul.

The graphical results, instead, show the actual impulse response func-
tions for each of the endogenous variables, given that they actually moved.
These can be especially useful in visualizing the shape of the transition func-
tions and the extent to which each variable is affected. TIP! If some variables
do not return to their steady state, either check that you have included enough
periods in your simulations, or make sure that your model is stationary, i.e.
that your steady state actually exists and is stable. If not, you should detrend
your variables and rewrite your model in terms of those variables.

3.10.2 Results - deterministic models

Automatically displayed results are much more scarce in the case of deter-
ministic models. If you entered steady, you will get a list of your steady
state results. If you entered check, eigenvalues will also be displayed and you
should receive a statement that the rank condition has been satisfied, if all
goes well! Finally, you will see some intermediate output: the errors at each
iteration of the Newton solver used to estimate the solution to your model.
TIP! You should see these errors decrease upon each iteration; if not, your
model will probably not converge. If so, you may want to try to increase the
periods for the transition to the new steady state (the number of simulations



3.10. FILE EXECUTION AND RESULTS 35

periods). But more often, it may be a good idea to revise your equations. Of
course, although Dynare does not display a rich set of statistics and graphs
corresponding to the simulated output, it does not mean that you cannot cre-
ate these by hand from Matlab. To do so, you should start by looking at
section 4.1.3 of chapter 4 on finding, saving and viewing your output.





Chapter 4

Solving DSGE models -
advanced topics

This chapter is a collection of topics - not all related to each other - that you
will probably find interesting or at least understandable, if you have read,
and/ or feel comfortable with, the earlier chapter 3 on the basics of solving
DSGE models. To provide at least some consistency, this chapter is divided
into three sections. The first section deals directly with features of Dynare,
such as dealing with correlated shocks, finding and saving your output, using
loops, referring to external files and dealing with infinite eigenvalues. The
second section overviews some of the inner workings of Dynare. The goal
is to provide a brief explanation of the files that are created by Dynare to
help you in troubleshooting or provide a starting point in case you actually
want to customize the way Dynare works. The third section of the chapter
focusses on modeling tips optimized for Dynare, but possibly also helpful for
other work.

4.1 Dynare features and functionality

4.1.1 Other examples

Other examples of .mod files used to generate impulse response functions are
available on the Dynare website. In particular, Jesus Fernandez-Villaverde
has provided a series of RBC model variants (from the most basic to some
including variable capacity utilization, indivisible labor and investment spe-
cific technological change). You can find these, along with helpful notes and
explanations, in the Official Examples section of the Dynare website.

Also, don’t forget to check occasionally the Open Online Examples page
to see if any other user has posted an example that could help you in your

37
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work; or maybe you would like to post an example there yourself?

4.1.2 Alternative, complete example

The following example aims to give you an alternative example to the one in
chapter 3, to learn the workings of Dynare. It also aims to give you exposure
to dealing with several correlated shocks. Your model may have two or
more shocks, and these may be correlated to each other. The example below
illustrates how you would introduce this into Dynare. Actually, the example
provided is somewhat more complete than strictly necessary. This is to give
you an alternative, full-blown example to the one described in chapter 3.

The model

The model is a simplified standard RBC model taken from Collard and Juil-
lard (2003) which served as the original User Guide for Dynare.

The economy consists of an infinitely living representative agent who values
consumption ct and labor services ht according to the following utility function

Et

∞∑

τ=t

βτ−t

(
log(ct)− θ

h1+ψ
t

1 + ψ

)

where, as usual, the discount factor 0 < β < 1, the disutility of labor θ > 0
and the labor supply elasticity ψ ≥ 0.

A social planner maximizes this utility function subject to the resource
constraint

ct + it = yt

where it is investment and yt output. Consumers are therefore also owners
of the firms. The economy is a real economy, where part of output can be
consumed and part invested to form physical capital. As is standard, the law
of motion of capital is given by

kt+1 = exp(bt)it + (1− δ)kt

with 0 < δ < 1, where δ is physical depreciation and bt a shock affecting
incorporated technological progress.

We assume output is produced according to a standard constant returns
to scale technology of the form

yt = exp(at)kα
t h1−α

t
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with α being the capital elasticity in the production function, with 0 < α < 1,
and where at represents a stochastic technological shock (or Solow residual).

Finally, we specify a shock structure that allows for shocks to display
persistence across time and correlation in the current period. That is

(
at

bt

)
=

(
ρ τ
τ ρ

) (
at−1

bt−1

)
+

(
εt

νt

)

where |ρ + τ | < 1 and |ρ− τ | < 1 to ensure stationarity (we call ρ the coeffi-
cient of persistence and τ that of cross-persistence). Furthermore, we assume
Et(εt) = 0, Et(νt) = 0 and that the contemporaneous variance-covariance
matrix of the innovations εt and νt is given by

(
σ2

ε ψσεσν

ψσεσν σ2
ν

)

and where corr(εtνs) = 0, corr(εtεs) = 0 and corr(νtνs) = 0 for all t $= s.

This system - probably quite similar to standard RBC models you have run
into - yields the following first order conditions (which are straightforward to
reproduce in case you have doubts. . . ) and equilibrium conditions drawn from
the description above. Note that the first equation captures the labor supply
function and the second the intertemporal consumption Euler equation.

ctθh
1+ψ
t = (1− α)yt

1 = βEt

[(
exp(bt)ct

exp(bt+1)ct+1

) (
exp(bt+1)α

yt+1

kt+1
+ 1− δ

)]

yt = exp(at)kα
t h1−α

t

kt+1 = exp(bt)it + (1− δ)kt

at = ρat−1 + τbt−1 + εt

bt = τat−1 + ρbt−1 + νt

The .mod file

To “translate” the model into a language understandable by Dynare, we would
follow the steps outlined in chapter 3. We will assume that you’re comfort-
able with these and simply present the final .mod file below. Fist, though,
note that to introduce shocks into Dynare, we have two options (this was not
discussed in the earlier chapter). Either write:

shocks;
var e; stderr 0.009;
var u; stderr 0.009;
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var e, u = phi*0.009*0.009;
end;

where the last line specifies the contemporaneous correlation between our two
exogenous variables.

Alternatively, you can also write:

shocks;
var e = 0.009 ˆ 2;
var u = 0.009 ˆ 2;
var e, u = phi*0.009*0.009;
end;

So that you can gain experience by manipulating the entire model, here is
the complete .mod file corresponding to the above example. You can find the
corresponding file in the models folder under UserGuide in your installation
of Dynare. The file is called Alt Ex1.mod.

var y, c, k, a, h, b;
varexo e,u;
parameters beta, rho, alpha, delta, theta, psi, tau;
alpha = 0.36;
rho = 0.95;
tau = 0.025;
beta = 0.99;
delta = 0.025;
psi = 0;
theta = 2.95;
phi = 0.1;

model;
c*theta*ĥ(1+psi)=(1-alpha)*y;
k = beta*(((exp(b)*c)/(exp(b(+1))*c(+1)))
*(exp(b(+1))*alpha*y(+1)+(1-delta)*k));
y = exp(a)*(k(-1)̂alpha)*(ĥ(1-alpha));
k = exp(b)*(y-c)+(1-delta)*k(-1);
a = rho*a(-1)+tau*b(-1) + e;
b = tau*a(-1)+rho*b(-1) + u;
end;

initval;
y = 1.08068253095672;
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c = 0.80359242014163;
h = 0.29175631001732;
k = 5;
a = 0;
b = 0;
e = 0;
u = 0;
end;

shocks;
var e; stderr 0.009;
var u; stderr 0.009;
var e, u = phi*0.009*0.009;
end;

stoch simul(periods=2100);

4.1.3 Finding, saving and viewing your output

Where is output stored? Most of the moments of interest are stored in global
variable oo You can easily browse this global variable in Matlab by either
calling it in the command line, or using the workspace interface. In global
variable oo you will find the following (NOTE! variables will always appear
in the order in which you declared them in the preamble block of your .mod
file):

• steady state: the steady state of your variables

• mean: the mean of your variables

• var: the variance of your variables

• autocorr: the various autocorrelation matrices of your variables. Each
row of these matrices will correspond to a variables in time t, and
columns correspond to the variables lagged 1, for the first matrix, then
lagged 2 for the second matrix, and so on. Thus, the matrix of auto-
correlations that is automatically displayed in the results after running
stoch simul has, running down each column, the diagonal elements of
each of the various autocorrelation matrices described here.

• gamma y: the matrices of autocovariances. gamma y{1} represents vari-
ances, while gamma y{2} represents autocovariances where variables on
each column are lagged by one period and so on. By default, Dynare will
return autocovariances with a lag of 5. The last matrix (gamma y{7} in
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the default case) returns the variance decomposition, where each col-
umn captures the independent contribution of each shock to the variance
of each variable.

Furthermore, if you decide to run impulse response functions, you will
find a global variable oo .irfs comprising of vectors named endogenous
variable exogenous variable, like y e, reporting the values of the endoge-
nous variables corresponding to the impulse response functions, as a result of
the independent impulse of each exogenous shock.

To save your simulated variables, you can add the following command at
the end of your .mod file: dynasave (FILENAME) [variable names separated
by commas] If no variable names are specified in the optional field, Dynare will
save all endogenous variables. In Matlab, variables saved with the dynasave
command can be retrieved by using the Matlab command load -mat FILENAME.

4.1.4 Referring to external files

You may find it convenient to refer to an external file, either to compute the
steady state of your model, or when specifying shocks in an external file. The
former is described in section 3.6 of chapter 3 when discussing steady states.
The advantage of using Matlab, say, to find your model’s steady state was
clear with respect to Dynare version 3, as the latter resorted to numerical
approximations to find steady state values. But Dynare version 4 now uses
the same analytical methods available in Matlab. For most usage scenarios,
you should therefore do just as well to ask Dynare to compute your model’s
steady state (except, maybe, if you want to run loops, to vary your parameter
values, for instance, in which case writing a Matlab program may be more
handy).

But you may also be interested in the second possibility described above,
namely of specifying shocks in an external file, to simulate a model based on
shocks from a prior estimation, for instance. You could then retrieve the ex-
ogenous shocks from the oo file by saving them in a file called datafile.mat.
Finally, you could simulate a deterministic model with the shocks saved from
the estimation by specifying the source file for the shocks, using the
shocks(shocks file = datafile.mat) command. But of course, this is a bit
of a workaround, since you could also use the built-in commands in Dynare
to generate impulse response functions from estimated shocks, as described in
chapter 5.
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4.1.5 Infinite eigenvalues

If you use the command check in your .mod file, Dynare will report your sys-
tem’s eigenvalues and tell you if these meet the Blanchard-Kahn conditions.
At that point, don’t worry if you get infinite eigenvalues - these are are firmly
grounded in the theory of generalized eigenvalues. They have no detrimental
influence on the solution algorithm. As far as Blanchard-Kahn conditions are
concerned infinite eigenvalues are counted as explosive roots of modulus larger
than one.

4.2 Files created by Dynare

At times, you may get a message that there is an error in a file with a new
name, or you may want to have a closer look at how Dynare actually solves
your model - out of curiosity or maybe to do some customization of your own.
You may therefore find it helpful to get a brief overview of the internal files
that Dynare generates and the function of each one.

The dynare pre-processors essentially does three successive tasks: (i) pars-
ing of the mod file (it checks that the mod file is syntactically correct), and its
translation into internal machine representation (in particular, model equa-
tions are translated into expression trees), (ii) symbolic derivation of the model
equations, up to the needed order (depending on the computing needs), (iii)
outputting of several files, which are used from matlab. If the mod file is
“filename.mod”, then the pre-processor creates the following files:

• filename.m: a matlab file containing several instructions, notably the
parameter initializations and the matlab calls corresponding to comput-
ing tasks

• filename dynamic.m: a matlab file containing the model equations
and their derivatives (first, second and maybe third). Endogenous vari-
ables (resp. exogenous variables, parameters) are contained in a “y”
(resp. “x”, “params”) vector, with an index number depending on the
declaration order. The “y” vector has as many entries as their are (vari-
able, lag) pairs in the declared model. The model equations residuals
are stored in a vector named “residuals”. The model jacobian is put in
“g1” matrix. Second (resp. third) derivatives are in “g2” matrix (resp.
“g3”). If the “use dll” option has been specified in the model decla-
ration, the pre-processor will output a C file (with .c extension) rather
than a matlab file. It is then compiled to create a library (DLL) file. Us-
ing a compiled C file is supposed to give better computing performance
in model simulation/estimation.
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• filename static.m: a matlab file containing the stationarized version of
the model (i.e. where lagged variables are replaced by current variables),
with its jacobian. Used to compute the steady state. Same notations
than the dynamic file. Replaced by a C file when “use dll” option is
specified.

4.3 Modeling tips

4.3.1 Stationarizing your model

Models in Dynare must be stationary, such that you can linearize them around
a steady state and return to steady state after a shock. Thus, you must first
stationarize your model, then linearize it, either by hand, or by letting Dynare
do the work. You can then reconstruct ex-post the non-stationary simulated
variables after running impulse response functions.

For deterministic models, the trick is to use only stationary variables in
t + 1. More generally, if yt is I(1), you can always write yt+1 as yt + dyt+1,
where dyt = yt − yt−1. Of course, you need to know the value of dyt at the
final equilibrium.

Note that in a stationary model, it is expected that variables will eventually
go back to steady state after the initial shock. If you expect to see a growing
curve for a variable, you are thinking about a growth model. Because growth
models are nonstationary, it is easier to work with the stationarized version of
such models. Again, if you know the trend, you can always add it back after
the simulation of the stationary components of the variables.

4.3.2 Expectations taken in the past

For instance, to enter the term Et−1yt, define st = Et[yt+1] and then use s(−1)
in your .mod file. Note that, because of Jensen’s inequality, you cannot do
this for terms that enter your equation in a non-linear fashion. If you do have
non-linear terms on which you want to take expectations in the past, you
would need to apply the above manipulation to the entire equation, as if yt

were an equation, not just a variable.

4.3.3 Infinite sums

Dealing with infinite sums is tricky in general, and needs particular care when
working with Dynare. The trick is to use a recursive representation of the
sum. For example, suppose your model included:

∞∑

j=0

βjxt+j = 0,
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Note that the above can also be written by using an auxiliary variable St,
defined as:

St ≡
∞∑

j=0

βjxt+j ,

which can also be written in the following recursive manner:

St ≡
∞∑

j=0

βjxt+j = xt +
∞∑

j=1

βjxt+j = xt + β
∞∑

j=0

βjxt+1+j ≡ xt + St+1

This formulation turns out to be useful in problems of the following form:

∞∑

j=0

βjxt+j = pt

∞∑

j=0

γjyt+j ,

which can be written as a recursive system of the form:

S1t = xt + βS1t+1,

S2t = yt + γS2t+1,

S1 = ptS2.

This is particularly helpful, for instance, in a Calvo type setting, as
illustrated in the following brief example. The RBC model with monopolistic
competition introduced in chapter 3 involved flexible prices. The extension
with sticky prices, à la Calvo for instance, is instead typical of the new Key-
nesian monetary literature, exemplified by papers such as Clarida, Gali, and
Gertler (1999).

The optimal price for a firm resetting its price in period t, given that it
will be able to reset its price only with probability 1− θ each period, is

p∗t (i) = µ + (1− βθ)
∞∑

k=0

(βθ)kEt[mcn
t+k(i)]

where µ is the markup, β is a discount factor, i represents a firm of the contin-
uum between 0 and 1, and mct is marginal cost as described in the example in
chapter 3. The trouble, of course, is how to input this infinite sum into
Dynare?

It turns out that the Calvo price setting implies that the aggregate price
follows the equation of motion pt = θpt−1 + (1 − θ)p∗t , thus implying the
following inflation relationship πt = (1 − θ)(p∗t − pt−1). Finally, we can also
rewrite the optimal price setting equation, after some algebraic manipulations,
as

p∗t − pt−1 = (1− βθ)
∞∑

k=0

(βθ)kEt[m̂ct+k] +
∞∑

k=0

(βθ)kEt[πt+k]
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where m̂ct+k = mct+k+µ is the deviation of the marginal cost from its natural
rate, defined as the marginal cost when prices are perfectly flexible.

The trick now is to note that the above can be written recursively, by
writing the right hand side as the first term of the sum (with k = 0) plus the
remainder of the sum, which can be written as the left hand side term scrolled
forward one period and appropriately discounted. Mathematically, this yields:

p∗t − pt−1 = (1− βθ)m̂ct+k + πt + β θEt[p∗t+1 − pt]

which has gotten rid of our infinite sum! That would be enough for Dynare,
but for convenience, we can go one step further and write the above as

πt = βEt[πt+1] + λm̂ct

where λ ≡ (1−θ)(1−βθ)
θ , which is the recognizable inflation equation in the new

Keynesian (or new Neoclassical) monetary literature.

4.3.4 Infinite sums with changing timing of expectations

When you are not able to write an infinite sum recursively, as the index of
the expectations changes with each element of the sum, as in the following
example, a different approach than the one mentioned above is necessary.

Suppose your model included the following sum:

yt =
∞∑

j=0

Et−jxt

where yt and xt are endogenous variables.

In Dynare, the best way to handle this is to write out the first k terms
explicitly and enter each one in Dynare, such as: Et−1xt+Et−2xt+. . .+Et−kxt.



Chapter 5

Estimating DSGE models -
basics

As in the chapter 3, this chapter is structured around an example. The goal
of this chapter is to lead you through the basic functionality in Dynare to
estimate models using Bayesian techniques, so that by the end of the chapter
you should have the capacity to estimate a model of your own. This chapter
is therefore very practically-oriented and abstracts from the underlying com-
putations that Dynare undertakes to estimate a model; that subject is instead
covered in some depth in chapter 8, while more advanced topics of practical
appeal are discussed in chapter 6.

5.1 Introducing an example

The example introduced in this chapter is particularly basic. This is for two
reasons. First, we did not want to introduce yet another example in this sec-
tion; there’s enough new material to keep you busy. Instead, we thought it
would be easiest to simply continue working with the example introduced in
chapter 3 with which you are probably already quite familiar. Second, the
goal of the example in this chapter is really to explain features in context,
but not necessarily to duplicate a “real life scenario” you would face when
writing a paper. Once you feel comfortable with the content of this chapter,
though, you can always move on to chapter 6 where you will find a full-fledged
replication of a recent academic paper, featuring a non-stationary model.

Recall from chapter 3 that we are dealing with an RBC model with mo-
nopolistic competition. Suppose we had data on business cycle variations of
output. Suppose also that we thought our little RBC model did a good job of
reproducing reality. We could then use Bayesian methods to estimate the pa-
rameters of the model: α, the capital share of output, β, the discount factor,

47
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δ, the depreciation rate, ψ, the weight on leisure in the utility function, ρ, the
degree of persistence in productivity, and ε, the markup parameter. Note that
in Bayesian estimation, the condition for undertaking estimation is that there
be at least as many shocks as there are observables (a less stringent condition
than for maximum likelihood estimation). It may be that this does not allow
you to identify all your parameters - yielding posterior distributions identical
to prior distributions - but the Bayesian estimation procedure would still run
successfully. Let’s see how to go about doing this.

5.2 Declaring variables and parameters

To input the above model into Dynare for estimation purposes, we must first
declare the model’s variables in the preamble of the .mod file. This is done
exactly as described in chapter 3 on solving DSGE models. We thus begin the
.mod file with:

var y c k i l y l w r z;
varexo e;

parameters beta psi delta alpha rho epsilon;

5.3 Declaring the model

Suppose that the equation of motion of technology is a stationary AR(1) with
an autoregressive parameter, ρ, less than one. The model’s variables would
therefore be stationary and we can proceed without complications. The al-
ternative scenario with non-stationary variables is more complicated and
dealt with in chapter 6 (in the additional example). In the stationary case,
our model block would look exactly as in chater 3:

model;
(1/c) = beta*(1/c(+1))*(1+r(+1)-delta);
psi*c/(1-l) = w;
c+i = y;
y = (k(-1)̂alpha)*(exp(z)*l)̂(1-alpha);
w = y*((epsilon-1)/epsilon)*(1-alpha)/l;
r = y*((epsilon-1)/epsilon)*alpha/k(-1);
i = k-(1-delta)*k(-1);
y l = y/l;
z = rho*z(-1)+e;
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end;

5.4 Declaring observable variables

This should not come as a surprise. Dynare must know which variables are
observable for the estimation procedure. NOTE! These variables must be
available in the data file, as explained in section 5.7 below. For the moment,
we write:

varobs Y;

5.5 Specifying the steady state

Before Dynare estimates a model, it first linearizes it around a steady state.
Thus, a steady state must exist for the model and although Dynare can calcu-
late it, we must give it a hand by declaring approximate values for the steady
state. This is just as explained in details and according to the same syntax
outlined in chapter 3, covering the initval, steady and check commands.
In fact, as this chapter uses the same model as that outlined in chapter 3, the
steady state block will look exactly the same.

TIP! During estimation, in finding the posterior mode, Dynare recalcu-
lates the steady state of the model at each iteration of the optimization rou-
tine (more on this later), based on the newest round of parameters available.
Thus, by providing approximate initial values and relying solely on the built-
in Dynare algorithm to find the steady state (a numerical procedure), you will
significantly slow down the computation of the posterior mode. Dynare will
end up spending 60 to 70% of the time recalculating steady states. It is much
more efficient to write an external Matlab steady state file and let Dynare
use that file to find the steady state of your model by algebraic procedure. For
more details on writing an external Matlab file to find your model’s steady
state, please refer to section 3.6.3 of chapter 3.

5.6 Declaring priors

Priors play an important role in Bayesian estimation and consequently de-
serve a central role in the specification of the .mod file. Priors, in Bayesian
estimation, are declared as a distribution. The general syntax to introduce
priors in Dynare is the following:
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estimated params;
PARAMETER NAME, PRIOR SHAPE, PRIOR MEAN, PRIOR STANDARD ERROR [, PRIOR
3rd PARAMETER] [,PRIOR 4th PARAMETER] ;
end;

where the following table defines each term more clearly

PRIOR SHAPE Corresponding distribution Range
NORMAL PDF N(µ,σ) R
GAMMA PDF G2(µ,σ, p3) [p3,+∞)
BETA PDF B(µ,σ, p3, p4) [p3, p4]
INV GAMMA PDF IG1(µ,σ) R+

UNIFORM PDF U(p3, p4) [p3, p4]

where µ is the PRIOR MEAN, σ is the PRIOR STANDARD ERROR, p3 is the PRIOR
3rd PARAMETER (whose default is 0) and p4 is the PRIOR 4th PARAMETER (whose
default is 1). TIP! When specifying a uniform distribution between 0 and 1 as
a prior for a parameter, say α, you therefore have to put two empty spaces for
parameters µ and σ, and then specify parameters p3 and p4, since the uniform
distribution only takes p3 and p4 as arguments. For instance, you would write
alpha, uniform pdf, , , 0,1;

For a more complete review of all possible options for declaring priors, as
well as the syntax to declare priors for maximum likelihood estimation (not
Bayesian), see the Reference Manual. Note also that if some parameters in a
model are calibrated and are not to be estimated, you should declare them as
such, by using the parameters command and its related syntax, as explained
in chapter 3.

TIP! Choosing the appropriate prior for your parameters is a tricky, yet
very important endeavor. It is worth spending time on your choice of priors
and to test the robustness of your results to your priors. Some considerations
may prove helpful. First, think about the domain of your prior over each pa-
rameter. Should it be bounded? Should it be opened on either or both sides?
Remember also that if you specify a probability of zero over a certain domain
in your prior, you will necessarily also find a probability of zero in your pos-
terior distribution. Then, think about the shape of your prior distribution.
Should it be symmetric? Skewed? If so, on which side? You may also go
one step further and build a distribution for each of your parameters in your
mind. Ask yourself, for instance, what is the probability that your parameter
is bigger than a certain value, and repeat the exercise by incrementally de-
creasing that value. You can then pick the standard distribution that best fits

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
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your perceived distribution. Finally, instead of describing here the shapes and
properties of each standard distribution available in Dynare, you are instead
encouraged to visualize these distributions yourself, either in a statistics book
or on the Web.

TIP! It may at times be desirable to estimate a transformation of a pa-
rameter appearing in the model, rather than the parameter itself. In such a
case, it is possible to declare the parameter to be estimated in the parameters
statement and to define the transformation at the top of the model section,
as a Matlab expression, by adding a pound sign (#) at the beginning of the
corresponding line. For example, you may find it easier to define a prior over
the discount factor, β, than its inverse which often shows up in Euler equa-
tions. Thus you would write:

model;
# sig = 1/bet;
c = sig*c(+1)*mpk;
end;

estimated params;
bet,normal pdf,1,0.05;
end;

TIP! Finally, another useful command to use is the estimated params init
command which declares numerical initial values for the optimizer when these
are different from the prior mean. This is especially useful when redoing an
estimation - if the optimizer got stuck the first time around, or needing a
greater number of draws in the Metropolis-Hastings algorithm - and wanting
to enter the posterior mode as initial values for the parameters instead of a
prior. The Reference Manual gives more details as to the exact syntax of this
command.

Coming back to our basic example, we would write:

estimated params;
alpha, beta pdf, 0.35, 0.02;
beta, beta pdf, 0.99, 0.002;
delta, beta pdf, 0.025, 0.003;
psi, gamma pdf, 1.75, 0.02;
rho, beta pdf, 0.95, 0.05;
epsilon, gamma pdf, 10, 0.003;
stderr e, inv gamma pdf, 0.01, inf;
end;

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
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5.7 Launching the estimation

To ask Dynare to estimate a model, all that is necessary is to add the com-
mand estimation at the end of the .mod file. Easy enough. But the real
complexity comes from the options available for the command (to be entered
in parentheses and sequentially, separated by commas, after the command
estimation). Below, we list the most common and useful options, and en-
courage you to view the Reference Manual for a complete list.

1. datafile = FILENAME: the datafile (a .m file, a .mat file, or an .xls
file). Note that observations do not need to show up in any order, but
vectors of observations need to be named with the same names as those
in var obs. In Excel files, for instance, observations could be ordered
in columns, and variable names would show up in the first cell of each
column.

2. nobs = INTEGER: the number of observations to be used (default: all
observations in the file)

3. first obs = INTEGER: the number of the first observation to be used
(default = 1). This is useful when running loops, or instance, to divide
the observations into sub-periods.

4. prefilter = 1: the estimation procedure demeans the data (default=0,
no prefiltering). This is useful if model variables are in deviations from
steady state, for instance, and therefore have zero mean. Demeaning the
observations would also impose a zero mean on the observed variables.

5. nograph: no graphs should be plotted.

6. conf sig = {INTEGER — DOUBLE }: the level for the confidence in-
tervals reported in the results (default = 0.90)

7. mh replic = INTEGER: number of replication for Metropolis Hasting
algorithm. For the time being, mh replic should be larger than 1200
(default = 20000)

8. mh nblocks = INTEGER: number of parallel chains for Metropolis Hast-
ing algorithm (default = 2). Despite this low default value, it is advisable
to work with a higher value, such as 5 or more. This improves the com-
putation of between group variance of the parameter means, one of the
key criteria to evaluate the efficiency of the Metropolis-Hastings to eval-
uate the posterior distribution. More details on this subject appear in
Chapter 6.

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
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9. mh drop = DOUBLE: the fraction of initially generated parameter vec-
tors to be dropped before using posterior simulations (default = 0.5; this
means that the first half of the draws from the Metropolis-Hastings are
discarded).

10. mh jscale = DOUBLE: the scale to be used for the jumping distribu-
tion in MH algorithm. The default value is rarely satisfactory. This
option must be tuned to obtain, ideally, an acceptance rate of 25% in
the Metropolis- Hastings algorithm (default = 0.2). The idea is not to
reject or accept too often a candidate parameter; the literature has set-
tled on a value of between 0.2 and 0.4. If the acceptance rate were too
high, your Metropolis-Hastings iterations would never visit the tails of a
distribution, while if it were too low, the iterations would get stuck in a
subspace of the parameter range. Note that the acceptance rate drops if
you increase the scale used in the jumping distribution and vice a versa.

11. mh init scale=DOUBLE: the scale to be used for drawing the initial
value of the Metropolis-Hastings chain (default=2*mh jscale). The idea
here is to draw initial values from a stretched out distribution in order
to maximize the chances of these values not being too close together,
which would defeat the purpose of running several blocks of Metropolis-
Hastings chains.

12. mode file=FILENAME: name of the file containing previous value for
the mode. When computing the mode, Dynare stores the mode (xparam1)
and the hessian (hh) in a file called MODEL NAME mode. This is a
particularly helpful option to speed up the estimation process if you have
already undertaken initial estimations and have values of the posterior
mode.

13. mode compute=INTEGER: specifies the optimizer for the mode com-
putation.

0: the mode isn’t computed. mode file must be specified

1: uses Matlab fmincon (see the Reference Manual to set options
for this command).

2: uses Lester Ingber’s Adaptive Simulated Annealing.

3: uses Matlab fminunc.

4 (default): uses Chris Sim’s csminwel.

14. mode check: when mode check is set, Dynare plots the minus of the
posterior density for values around the computed mode for each esti-
mated parameter in turn. This is helpful to diagnose problems with the
optimizer. A clear indication of a problem would be that the mode is
not at the trough (bottom of the minus) of the posterior distribution.

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
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15. load mh file: when load mh file is declared, Dynare adds to previous
Metropolis-Hastings simulations instead of starting from scratch. Again,
this is a useful option to speed up the process of estimation.

16. nodiagnostic: doesn’t compute the convergence diagnostics for Metropolis-
Hastings (default: diagnostics are computed and displayed). Actually
seeing if the various blocks of Metropolis-Hastings runs converge is a
powerful and useful option to build confidence in your model estima-
tion. More details on these diagnostics are given in Chapter 6.

17. bayesian irf: triggers the computation of the posterior distribution of im-
pulse response functions (IRFs). The length of the IRFs are controlled
by the irf option, as specified in chapter 3 when discussing the options for
stoch simul. To build the posterior distribution of the IRFs, Dynare
pulls parameter and shock values from the corresponding estimated dis-
tributions and, for each set of draws, generates an IRF. Repeating this
process often enough generates a distribution of IRFs. TIP! If you stop
the estimation procedure after calculating the posterior mode, or carry
out maximum likelihood estimation, only the corresponding parameter
estimates will be used to generate the IRFs. If you instead carry out
a full Metropolis-Hastings estimation, on the other hand, the IRFs will
use the parameters the posterior distributions, including the variance of
the shocks.

18. All options available for stoch simul can simply be added to the above
options, separated by commas. To view a list of these options, either
see the Reference Manual or section 3.8 of chapter 3.

19. moments varendo: triggers the computation of the posterior distribution
of the theoretical moments of the endogenous variables as in stoch simul
(the posterior distribution of the variance decomposition is also in-
cluded). ** will be implemented shortly - if not already - in Dynare
version 4.

20. filtered vars: triggers the computation of the posterior distribution of
filtered endogenous variables and shocks. See the note below on the
difference between filtered and smoothed shocks. ** will be implemented
shortly - if not already - in Dynare version 4.

21. smoother: triggers the computation of the posterior distribution of smoothed
endogenous variables and shocks. Smoothed shocks are a reconstruction
of the values of unobserved shocks over the sample, using all the informa-
tion contained in the sample of observations. Filtered shocks, instead,
are built only based on knowing past information. To calculate one pe-
riod ahead prediction errors, for instance, you should use filtered, not
smoothed variables.

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=view&id=51&Itemid=84
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22. forecast = INTEGER: computes the posterior distribution of a forecast
on INTEGER periods after the end of the sample used in estimation.
The corresponding graph includes one confidence interval describing un-
certainty due to parameters and one confidence interval describing un-
certainty due to parameters and future shocks. Note that Dynare cannot
forecast out of the posterior mode. You need to run Metropolis-Hastings
iterations before being able to run forecasts on an estimated model. Fi-
nally, running a forecast is very similar to an IRF, as in bayesian irf,
except that the forecast does not begin at a steady state, but simply
at the point corresponding to the last set of observations. The goal
of undertaking a forecast is to see how the system returns to steady
state from this starting point. Of course, as observation do not exist
for all variables, those necessary are reconstructed by sampling out of
the posterior distribution of parameters. Again, repeating this step of-
ten enough yields a posterior distribution of the forecast. ** will be
implemented shortly - if not already - in Dynare version 4.

TIP! Before launching estimation it is a good idea to make sure that your
model is correctly declared, that a steady state exists and that it can be sim-
ulated for at least one set of parameter values. You may therefore want to
create a test version of your .mod file. In this test file, you would comment
out or erase the commands related to estimation, remove the prior estimates
for parameter values and replace them with actual parameter values in the
preamble, remove any non-stationary variables from your model, add a shocks
block, make sure you have steady and possibly check following the initval
block if you do not have exact steady state values and run a simulation using
stoch simul at the end of your .mod file. Details on model solution and sim-
ulation can be found in Chapter 3.

Finally, coming back to our example, we could choose a standard option:

estimation(datafile=simuldataRBC,nobs=200,first obs=500,
mh replic=2000,mh nblocks=2,mh drop=0.45,mh jscale=0.8);

This ends our description of the .mod file.

5.8 The complete .mod file

To summarize and to get a complete perspective on our work so far, here is
the complete .mod file for the estimation of our very basic model. You can
find the corresponding file in the models folder under UserGuide in your in-
stallation of Dynare. The file is called RBC Est.mod.

var y c k i l y l w r z;



56 CHAPTER 5. ESTIMATING DSGE MODELS - BASICS

varexo e;

parameters beta psi delta alpha rho epsilon;

model;
(1/c) = beta*(1/c(+1))*(1+r(+1)-delta);
psi*c/(1-l) = w;
c+i = y;
y = (k(-1)̂alpha)*(exp(z)*l)̂(1-alpha);
w = y*((epsilon-1)/epsilon)*(1-alpha)/l;
r = y*((epsilon-1)/epsilon)*alpha/k(-1);
i = k-(1-delta)*k(-1);
y l = y/l;
z = rho*z(-1)+e;
end;

varobs Y;

initval;
k = 9;
c = 0.7;
l = 0.3;
w = 2.0;
r = 0;
z = 0;
e = 0;
end;

steady;

check;

estimated params;
alpha, beta pdf, 0.35, 0.02;
beta, beta pdf, 0.99, 0.002;
delta, beta pdf, 0.025, 0.003;
psi, gamma pdf, 1.75, 0.02;
rho, beta pdf, 0.95, 0.05;
epsilon, gamma pdf, 10, 0.003;
stderr e, inv gamma pdf, 0.01, inf;
end;

estimation(datafile=simuldataRBC,nobs=200,first obs=500,
mh replic=2000,mh nblocks=2,mh drop=0.45,mh jscale=0.8);
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5.9 Interpreting output

As in the case of model solution and simulation, Dynare returns both tabular
and graphical output. On the basis of the options entered in the example
.mod file above, Dynare will display the following results.

5.9.1 Tabular results

The first results to be displayed (and calculated from a chronological stand-
point) are the steady state results. Note the dummy values of 1 for the non-
stationary variables Y obs and P obs. These results are followed by the eigen-
values of the system, presented in the order in which the endogenous variables
are declared at the beginning of the .mod file. The table of eigenvalues is
completed with a statement about the Blanchard-Kahn condition being met
- hopefully!

The next set of results are for the numerical iterations necessary to find
the posterior mode, as explained in more details in Chapter 6. The improve-
ment from one iteration to the next reaches zero, Dynare give the value of
the objective function (the posterior Kernel) at the mode and displays two
important table summarizing results from posterior maximization.

The first table summarizes results for parameter values. It includes: prior
means, posterior mode, standard deviation and t-stat of the mode (based on
the assumption of a Normal, probably erroneous when undertaking Bayesian
estimation, as opposed to standard maximum likelihood), as well as the prior
distribution and standard deviation (pstdev). It is followed by a second table
summarizing the same results for the shocks. It may be entirely possible that
you get an infinite value for a standard deviation, this is simply the limit case
of the inverse gamma distribution.

5.9.2 Graphical results

** corresponding graphs will be reproduced below.

The first figure comes up soon after launching Dynare as little computa-
tion is necessary to generate it. The figure returns a graphical representation
of the priors for each parameter of interest.



58 CHAPTER 5. ESTIMATING DSGE MODELS - BASICS

The second set of figures displays “MCMC univariate diagnostics”, where
MCMC stands for Monte Carlo Markov Chains. This is the main source
of feedback to gain confidence, or spot a problem, with results. Recall that
Dynare completes several runs of Metropolis-Hastings simulations (as many as
determined in the option mh nblocks, each time starting from a different ini-
tial value). If the results from one chain are sensible, and the optimizer did not
get stuck in an odd area of the parameter subspace, two things should happen.
First, results within any of the however many iterations of Metropolis-Hastings
simulation should be similar. And second, results between the various chains
should be close. This is the idea of what the MCMC diagnostics track.

More specifically, the red and blue lines on the charts represent specific
measures of the parameter vectors both within and between chains. For the
results to be sensible, these should be relatively constant (although there
will always be some variation) and they should converge. Dynare reports
three measures: “interval”, being constructed from an 80% confidence inter-
val around the parameter mean, “m2”, being a measure of the variance and
“m3” based on third moments. In each case, Dynare reports both the within
and the between chains measures. The figure entitled “multivariate diagnos-
tic” presents results of the same nature, except that they reflect an aggregate
measure based on the eigenvalues of the variance-covariance matrix of each
parameter.

In our example above, you can tell that indeed, we obtain convergence
and relative stability in all measures of the parameter moments. Note that
the horizontal axis represents the number of Metropolis-Hastings iterations
that have been undertaken, and the vertical axis the measure of the parame-
ter moments, with the first, corresponding to the measure at the initial value
of the Metropolis-Hastings iterations.

TIP! If the plotted moments are highly unstable or do not converge, you
may have a problem of poor priors. It is advisable to redo the estimation with
different priors. If you have trouble coming up with a new prior, try starting
with a uniform and relatively wide prior and see where the data leads the
posterior distribution. Another approach is to undertake a greater number of
Metropolis-Hastings simulations.

The first to last figure - figure 6 in our example - displays the most inter-
esting set of results, towards which most of the computations undertaken by
Dynare are directed: the posterior distribution. In fact, the figure compares
the posterior to the prior distribution (black vs. grey lines). In addition,
on the posterior distribution, Dynare plots a green line which represents the
posterior mode. These allow you to make statements about your data other
than simply concerning the mean and variance of the parameters; you can also
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discuss the probability that your parameter is larger or smaller than a certain
value.

TIP! These graphs are of course especially relevant and present key results,
but they can also serve as tools to detect problems or build additional confi-
dence in your results. First, the prior and the posterior distributions should
not be excessively different. Second, the posterior distributions should be close
to normal, or at least not display a shape that is clearly non-normal. Third,
the green mode (calculated from the numerical optimization of the posterior
kernel) should not be too far away from the mode of the posterior distribution.
If not, it is advisable to undertake a greater number of Metropolis-Hastings
simulations.

The last figure returns the smoothed estimated shocks in a useful illustra-
tion to eye-ball the plausibility of the size and frequency of the shocks. The
horizontal axis, in this case, represents the number of periods in the sample.
One thing to check is the fact that shocks should be centered around zero.
That is indeed the case for our example.





Chapter 6

Estimating DSGE models -
advanced topics

This chapter focusses on advanced topics and features of Dynare in the area of
model estimation. The chapter begins by presenting a more complex example
than the one used for illustration purposes in chapter 5. The goal is to show
how Dynare would be used in the more “realistic” setting of reproducing a
recent academic paper. The chapter then follows with sections on comparing
models to one another, and then to BVARs, and ends with a table summariz-
ing where output series are stored and how these can be retrieved.

6.1 Alternative and non-stationary example

The example provided in chapter 5 is really only useful for illustration pur-
poses. So we thought you would enjoy (and continue learning from!) a more
realistic example which reproduces the work in a recent - and highly regarded
- academic paper. The example shows how to use Dynare in a more realistic
setting, while emphasizing techniques to deal with non-stationary observations
and stochastic trends in dynamics.

6.1.1 Introducing the example

The example is drawn from Schorfheide (2000). This first section introduces
the model, its basic intuitions and equations. We will then see in subsequent
sections how to estimate it using Dynare. Note that the original paper by
Schorfheide mainly focusses on estimation methodologies, difficulties and so-
lutions, with a special interest in model comparison, while the mathematics
and economic intuitions of the model it evaluates are drawn from Nason and
Cogley (1994). That paper should serve as a helpful reference if anything is
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Figure 6.1: Continuous lines show the circulation of nominal funds, while
dashed lines show the flow of real variables.

left unclear in the description below.

In essence, the model studied by Schorfheide (2000) is one of cash in ad-
vance (CIA). The goal of the paper is to estimate the model using Bayesian
techniques, while observing only output and inflation. In the model, there are
several markets and actors to keep track of. So to clarify things, figure 6.1.1
sketches the main dynamics of the model. You may want to refer back to the
figure as you read through the following sections.

The economy is made up of three central agents and one secondary agent:
households, firms and banks (representing the financial sector), and a mon-
etary authority which plays a minor role. Households maximize their utility
function which depends on consumption, Ct, and hours worked, Ht, while
deciding how much money to hold next period in cash, Mt+1 and how much
to deposit at the bank, Dt, in order to earn RH,t − 1 interest. Households
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therefore solve the problem

max
{Ct,Ht,Mt+1,Dt} E0

[∑∞
t=0 βt [(1− φ) ln Ct + φ ln(1−Ht)]

]

s.t. PtCt ≤Mt −Dt + WtHt

0 ≤ Dt

Mt+1 = (Mt −Dt + WtHt − PtCt) + RH,tDt + Ft + Bt

where the second equation spells out the cash in advance constraint including
wage revenues, the third the inability to borrow from the bank and the fourth
the intertemporal budget constraint emphasizing that households accumulate
the money that remains after bank deposits and purchases on goods are de-
ducted from total inflows made up of the money they receive from last period’s
cash balances, wages, interests, as well as dividends from firms, Ft, and from
banks, Bt, which in both cases are made up of net cash inflows defined below.

Banks, on their end, receive cash deposits from households and a cash
injection, Xt from the central bank (which equals the net change in nominal
money balances, Mt+1 −Mt). It uses these funds to disburse loans to firms,
Lt, on which they make a net return of RF,t − 1. Of course, banks are con-
strained in their loans by a credit market equilibrium condition Lt ≤ Xt +Dt.
Finally, bank dividends, Bt are simply equal to Dt+RF,tLt−RH,tDt−Lt+Xt.

Finally, firms maximize the net present value of future dividends (dis-
counted by the marginal utility of consumption, since they are owned by
households) by choosing dividends, next period’s capital stock, Kt+1, labor
demand, Nt, and loans. Its problem is summarized by

max
{Ft,Kt+1,Nt,Lt} E0

[∑∞
t=0 βt+1 Ft

Ct+1Pt+1

]

s.t. Ft ≤ Lt + Pt
[
Kα

t (AtNt)1−α −Kt+1 + (1− δ)Kt
]
−WtNt − LtRF,t

WtNt ≤ Lt

where the second equation makes use of the production function Yt = Kα
t (AtNt)1−α

and the real aggregate accounting constraint (goods market equilibrium) Ct + It = Yt,
where It = Kt+1 − (1 − δ)Kt, and where δ is the rate of depreciation. Note
that it is the firms that engage in investment in this model, by trading off
investment for dividends to consumers. The third equation simply specifies
that bank loans are used to pay for wage costs.

To close the model, we add the usual labor and money market equilib-
rium equations, Ht = Nt and PtCt = Mt + Xt, as well as the condition that
RH,t = RF,t due to the equal risk profiles of the loans.
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More importantly, we add a stochastic elements to the model. The model
allows for two sources of perturbations, one real, affecting technology and one
nominal, affecting the money stock. These important equations are

lnAt = γ + lnAt−1 + εA,t, εA,t ∼ N(0,σ2
A)

and

lnmt = (1− ρ) ln m∗ + ρ lnmt−1 + εM,t, εM,t ∼ N(0,σ2
M )

where mt ≡MT+1/Mt is the growth rate of the money stock. Note that theses
expressions for trends are not written in the most straightforward manner nor
very consistently. But we reproduced them never-the-less to make it easier to
compare this example to the original paper.

The first equation is therefore a unit root with drift in the log of tech-
nology, and the second an autoregressive stationary process in the growth
rate of money, but an AR(2) with a unit root in the log of the level of
money. This can be seen from the definition of mt which can be rewritten
as lnMt+1 = ln Mt + lnmt.1

When the above functions are maximized, we obtain the following set of
first order and equilibrium conditions. We will not dwell on the derivations
here, to save space, but encourage you to browse Nason and Cogley (1994) for
additional details. We nonetheless give a brief intuitive explanation of each

1Alternatively, we could have written the AR(2) process in state space form and realized
that the system has an eigenvalue of one. Otherwise said, one is a root of the second order
autoregressive lag polynomial. As usual, if the logs of a variable are specified to follow a unit
root process, the rate of growth of the series is a stationary stochastic process; see Hamilton
(1994), chapter 15, for details.
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equation. The system comes down to

Et

{
− P̂t/

[
Ĉt+1P̂t+1mt

] }
= βe−α(γ+εA,t+1)Pt+1

[
αK̂α−1

t N1−α
t+1 + (1− δ)

]

/
[
ĉt+2P̂t+2mt+1

] }

Ŵt = L̂t/Nt

φ

1− φ

[
ĈtP̂t/ (1−Nt)

]
= L̂t/Nt

Rt = (1− α)P̂te
−α(γ+εA,t+1)K̂α

t−1N
−α
t /Ŵt

[
ĈtP̂t

]−1
= β

[
(1− α) P̂te

−α(γ+εA,t+1)K̂α
t−1N

1−α
t

]

×Et

[
L̂tmtĈt+1P̂t+1

]−1

Ĉt + K̂t = e−α(γ+εA,t)K̂α
t−1N

1−α + (1− δ)e−(γ+εA,t)K̂t−1

P̂tĈ = mt

mt − 1 + D̂t = L̂t

Ŷt = K̂α
t−1N

1−αe−α(γ+εA,t)

ln(mt) = (1− ρ) ln(m*) + ρ ln(mt−1) + εM,t

At

At−1
≡ dAt = exp(γ + εA,t)

Yt/Yt−1 = eγ+εA,t Ŷt/Ŷt−1

Pt/Pt−1 = (P̂t/P̂t−1)(mt−1/eγ+εA,t)

where, importantly, hats over variables no longer mean deviations from steady
state, but instead represent variables that have been made stationary. We
come back to this important topic in details in section 6.1.3 below. For now,
we pause a moment to give some intuition for the above equations. In order,
these equations correspond to:

1. The Euler equation in the goods market, representing the tradeoff to the
economy of moving consumption goods across time.

2. The firms’ borrowing constraint, also affecting labor demand, as firms
use borrowed funds to pay for labor input.

3. The intertemporal labor market optimality condition, linking labor sup-
ply, labor demand, and the marginal rate of substitution between con-
sumption and leisure.

4. The equilibrium interest rate in which the marginal revenue product of
labor equals the cost of borrowing to pay for that additional unit of
labor.
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5. The Euler equation in the credit market, which ensures that giving up
one unit of consumption today for additional savings equals the net
present value of future consumption.

6. The aggregate resource constraint.

7. The money market equilibrium condition equating nominal consumption
demand to money demand to money supply to current nominal balances
plus money injection.

8. The credit market equilibrium condition.

9. The production function.

10. The stochastic process for money growth.

11. The stochastic process for technology.

12. The relationship between observable variables and stationary variables;
more details on these last two equations appear in the following section.

6.1.2 Declaring variables and parameters

This block of the .mod file follows the usual conventions and would look like:

var m P c e W R k d n l Y obs P obs y dA;
varexo e a e m;

parameters alp, bet, gam, mst, rho, psi, del;

where the choice of upper and lower case letters is not significant, the first set
of endogenous variables, up to l, are as specified in the model setup above,
and where the last five variables are defined and explained in more details in
the section below on declaring the model in Dynare. The exogenous variables
are as expected and concern the shocks to the evolution of technology and
money balances.

6.1.3 The origin of non-stationarity

The problem of non-stationarity comes from having stochastic trends in tech-
nology and money. The non-stationarity comes out clearly when attempting
to solve the model for a steady state and realizing it does not have one. It can
be shown that when shocks are null, real variables grow with At (except for
labor, Nt, which is stationary as there is no population growth), nominal vari-
ables grow with Mt and prices with Mt/At. Detrending therefore involves
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the following operations (where hats over variables represent stationary vari-
ables): for real variables, q̂t = qt/At, where qt = [yt, ct, it, kt+1]. For nominal
variables, Q̂t = Qt/Mt, where Qt = [dt, lt,Wt]. And for prices, P̂t = Pt ·At/Mt.

6.1.4 Stationarizing variables

Let’s illustrate this transformation on output, and leave the transformations
of the remaining equations as an exercise, if you wish (Nason and Cogley
(1994) includes more details on the transformations of each equation). We
stationarize output by dividing its real variables (except for labor) by At. We
define Ŷt to equal Yt/At and K̂t as Kt/At. NOTE! Recall from section 3.5 in
chapter 3), that in Dynare variables take the time subscript of the period in
which they are decided (in the case of the capital stock, today’s capital stock
is a result of yesterday’s decision). Thus, in the output equation, we should
actually work with K̂t−1 = Kt−1/At−1. The resulting equation made up of
stationary variables is

Yt

At
=

(
Kt−1

At−1

)α

A1−α
t N1−α

t A−1
t Aα

t−1

Ŷt = K̂α
t−1N

1−α
t

(
At

At−1

)−α

= K̂α
t−1N

1−α
t exp(−α(γ + εA,t))

where we go from the second to the third line by taking the exponential of
both sides of the equation of motion of technology.

The above is the equation we retain for the .mod file of Dynare into which
we enter:

y=k(-1) ̂ alp*n ̂ (1-alp)*exp(-alp*(gam+e a))

The other equations are entered into the .mod file after transforming them
in exactly the same way as the one above. A final transformation to consider,
that turns out to be useful since we often deal with the growth rate of tech-
nology, is to define

dA = exp(gam+e a)

by simply taking the exponential of both sides of the stochastic process of
technology defined in the model setup above.



68 CHAPTER 6. ESTIMATING DSGE MODELS - ADVANCED TOPICS

6.1.5 Linking stationary variables to the data

And finally, we must make a decision as to our non-stationary observa-
tions. We could simply stationarize them by working with rates of growth
(which we know are constant). In the case of output, the observable variable
would become Yt/Yt−1. We would then have to relate this observable, call it
gy obs, to our (stationary) model’s variables Ŷt by using the definition that
Ŷt ≡ Yt/At. Thus, we add to the model block of the .mod file:

gy obs = dA*y/y(-1);

where, the y of the .mod file are the stationary Ŷt.

But, we could also work with non-stationary data in levels. This
complicates things somewhat, but illustrates several features of Dynare worth
highlighting; we therefore follow this path in the remainder of the example.
The result is not very different, though, from what we just saw above. The
goal is to add a line to the model block of our .mod file that relates the non
stationary observables, call them Yobs, to our stationary output, Ŷt. We could
simply write Yobs = ŶtAt. But since we don’t have an At variable, but just a
dAt, we we-write the above relationship in ratios. To the .mod file, we there-
fore add:

Y obs/Y obs(-1) = dA*y/y(-1);

We of course do the same for prices, our other observable variable, except
that we use the relationship Pobs = P̂tMt/At as noted earlier. The details
of the correct transformations for prices are left as an exercise and can be
checked against the results below.

6.1.6 The resulting model block of the .mod file

model;
dA = exp(gam+e a);
log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e m;
-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k̂(alp-1)
*n(+1)̂(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;
W = l/n;
-(psi/(1-psi))*(c*P/(1-n))+l/n = 0;
R = P*(1-alp)*exp(-alp*(gam+e a))*k(-1)̂alp*n̂(-alp)/W;
1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e a))*k(-1)̂alp*n̂(1-alp)/
(m*l*c(+1)*P(+1)) = 0;
c+k = exp(-alp*(gam+e a))*k(-1)̂alp*n̂(1-alp)+(1-del)
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*exp(-(gam+e a))*k(-1);
P*c = m;
m-1+d = l;
e = exp(e a);
y = k(-1)̂alp*n̂(1-alp)*exp(-alp*(gam+e a));
Y obs/Y obs(-1) = dA*y/y(-1);
P obs/P obs(-1) = (p/p(-1))*m(-1)/dA;
end;

where, of course, the input conventions, such as ending lines with semicolons
and indicating the timing of variables in parentheses, are the same as those
listed in chapter 3.

TIP! In the above model block, notice that what we have done is in fact
relegated the non-stationarity of the model to just the last two equations,
concerning the observables which are, after all, non-stationary. The problem
that arises, though, is that we cannot linearize the above system in levels, as
the last two equations don’t have a steady state. If we first take logs, though,
they become linear and it doesn’t matter anymore where we calculate their
derivative when taking a Taylor expansion of all the equations in the system.
Thus, when dealing with non-stationary observations, you must log-
linearize your model (and not just linearize it); this is a point to which we
will return later.

6.1.7 Declaring observable variables

We begin by declaring which of our model’s variables are observables. In our
.mod file we write

varobs P obs Y obs;

to specify that our observable variables are indeed P obs and Y obs as noted
in the section above. NOTE! Recall from earlier that the number of observed
variables must be smaller or equal to the number of shocks such that the model
be estimated. If this is not the case, you should add measurement shocks to
your model where you deem most appropriate.

6.1.8 Declaring trends in observable variables

Recall that we decided to work with the non-stationary observable variables
in levels. Both output and prices exhibit stochastic trends. This can be seen
explicitly by taking the difference of logs of output and prices to compute
growth rates. In the case of output, we make use of the usual (by now!)
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relationship Yt = Ŷt · At. Taking logs of both sides and subtracting the same
equation scrolled back one period, we find:

∆ lnYt = ∆ ln Ŷt + γ + εA,t

emphasizing clearly the drift term γ, whereas we know ∆ ln Ŷt is stationary in
steady state.

In the case of prices, we apply the same manipulations to show that:

∆ lnPt = ∆ ln P̂t + lnmt−1 − γ − εA,t

Note from the original equation of motion of lnmt that in steady state,
lnmt = ln m∗, so that the drift terms in the above equation are lnm∗ − γ.2

In Dynare, any trends, whether deterministic or stochastic (the drift term)
must be declared up front. In the case of our example, we therefore write (in
a somewhat cumbersome manner)

observation trends;
P obs (log(mst)-gam);
Y obs (gam);
end;

In general, the command observation trends specifies linear trends as a
function of model parameters for the observed variables in the model.

6.1.9 Declaring unit roots in observable variables

And finally, since P obs and Y obs inherit the unit root characteristics of their
driving variables, technology and money, we must tell Dynare to use a diffuse
prior (infinite variance) for their initialization in the Kalman filter. Note that
for stationary variables, the unconditional covariance matrix of these variables
is used for initialization. The algorithm to compute a true diffuse prior is taken
from Durbin and Koopman (2001). To give these instructions to Dynare, we
write in the .mod

unit root vars P obs Y obs;

NOTE! You don’t need to declare unit roots for any non-stationary model.
Unit roots are only related to stochastic trends. You don’t need to use a diffuse

2This can also be see from substituting for ln mt−1 in the above equation with the
equation of motion of ln mt to yield: ∆ ln Pt = ∆ ln bPt + ln m∗ + ρ(ln mt−2− ln m∗)+ εM,t−
γ − εA,t where all terms on the right hand side are constant, except for ln m∗ and γ.
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initial condition in the case of a deterministic trend, since the variance is finite.

6.1.10 Specifying the steady state

Declaring the steady state is just as explained in details and according to
the same syntax explained in chapter 3, covering the initval, steady and
check commands. In chapter 5, section 5.5, we also discussed the usefulness
of providing an external Matlab file to solve for the steady state. In this
case, you can find the corresponding steady state file in the models folder
under UserGuide. The file is called fs2000ns steadystate.m. There are some
things to notice. First, the output of the function is the endogenous variables
at steady state, the ys vector. The check=0 limits steady state values to
real numbers. Second, notice the declaration of parameters at the beginning;
intuitive, but tedious... This functionality may be updated in later versions of
Dynare. Third, note that the file is really only a sequential set of equalities,
defining each variable in terms of parameters or variables solved in the lines
above. So far, nothing has changed with respect to the equivalent file of
chapter 5. The only novelty is the declaration of the non-stationary variables,
P obs and Y obs which take the value of 1. This is Dynare convention and
must be the case for all your non-stationary variables.

6.1.11 Declaring priors

We expand our .mod file with the following information:

estimated params;
alp, beta pdf, 0.356, 0.02;
bet, beta pdf, 0.993, 0.002;
gam, normal pdf, 0.0085, 0.003;
mst, normal pdf, 1.0002, 0.007;
rho, beta pdf, 0.129, 0.223;
psi, beta pdf, 0.65, 0.05;
del, beta pdf, 0.01, 0.005;
stderr e a, inv gamma pdf, 0.035449, inf;
stderr e m, inv gamma pdf, 0.008862, inf;
end;

6.1.12 Launching the estimation

We add the following commands to ask Dynare to run a basic estimation of
our model:
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estimation(datafile=fsdat,nobs=192,loglinear,mh replic=2000,
mode compute=4,mh nblocks=2,mh drop=0.45,mh jscale=0.65);

NOTE! As mentioned earlier, we need to instruct Dynare to log-linearize
our model, since it contains non-linear equations in non-stationary variables.
A simple linearization would fail as these variables do not have a steady state.
Fortunately, taking the log of the equations involving non-stationary variables
does the job of linearizing them.

6.1.13 The complete .mod file

We have seen each part of the .mod separately; it’s now time to get a picture
of what the complete file looks like. For convenience, the file also appears in
the models folder under UserGuide in your Dynare installation. The file is
called fs2000ns.mod.

var m P c e W R k d n l Y obs P obs y dA;
varexo e a e m;

parameters alp, bet, gam, mst, rho, psi, del;
model;
dA = exp(gam+e a);
log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e m;
-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k̂(alp-1)
*n(+1)̂(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;
W = l/n;
-(psi/(1-psi))*(c*P/(1-n))+l/n = 0;
R = P*(1-alp)*exp(-alp*(gam+e a))*k(-1)̂alp*n̂(-alp)/W;
1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e a))*k(-1)̂alp*n̂(1-alp)/(m*l*c(+1)*P(+1))
= 0;
c+k = exp(-alp*(gam+e a))*k(-1)̂alp*n̂(1-alp)+(1-del)*exp(-(gam+e a))*k(-1);
P*c = m;
m-1+d = l;
e = exp(e a);
y = k(-1)̂alp*n̂(1-alp)*exp(-alp*(gam+e a));
Y obs/Y obs(-1) = dA*y/y(-1);
P obs/P obs(-1) = (p/p(-1))*m(-1)/dA;
end;

varobs P obs Y obs;

observation trends;
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P obs (log(mst)-gam);
Y obs (gam);
end;

unit root vars = P obs Y obs;

initval;
k = 6;
m = mst;
P = 2.25;
c = 0.45;
e = 1;
W = 4;
R = 1.02;
d = 0.85;
n = 0.19;
l = 0.86;
y = 0.6;
dA = exp(gam);
end;

// the above is really only useful if you want to do a stoch simul
// of your model, since the estimation will use the Matlab
// steady state file also provided and discussed above.

steady;

estimated params;
alp, beta pdf, 0.356, 0.02;
bet, beta pdf, 0.993, 0.002;
gam, normal pdf, 0.0085, 0.003;
mst, normal pdf, 1.0002, 0.007;
rho, beta pdf, 0.129, 0.223;
psi, beta pdf, 0.65, 0.05;
del, beta pdf, 0.01, 0.005;
stderr e a, inv gamma pdf, 0.035449, inf;
stderr e m, inv gamma pdf, 0.008862, inf;
end;

estimation(datafile=fsdat,nobs=192,loglinear,mh replic=2000,
mode compute=4,mh nblocks=2,mh drop=0.45,mh jscale=0.65);
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Figure 6.2: At a high level, there are five basic steps to translate a model into
Dynare for successful estimation.

6.1.14 Summing it up

The explanations given above of each step necessary to translate the Schorfheide
(2000) example into language that Dynare can understand and process was
quite lengthy and involved a slew of new commands and information. It may
therefore be useful, to gain a “bird’s eyeview” on what we have just accom-
plished, and summarize the most important steps at a high level. This is done
in figure 6.1.14.

6.2 Comparing models based on their posterior
distributions

** TBD
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6.3 Where is your output stored?

The output from estimation can be extremely varied, depending on the in-
structions you give Dynare. The Reference Manual overviews the complete
set of potential output files and describes where you can find each one.

http://www.cepremap.cnrs.fr/juillard/mambo/download/manual/index.html




Chapter 7

Solving DSGE models -
Behind the scenes of Dynare

7.1 Introduction

The aim of this chapter is to peer behind the scenes of Dynare, or under its
hood, to get an idea of the methodologies and algorithms used in its com-
putations. Going into details would be beyond the scope of this User Guide
which will instead remain at a high level. What you will find below will
either comfort you in realizing that Dynare does what you expected of it -
and what you would have also done if you had had to code it all yourself
(with a little extra time on your hands!), or will spur your curiosity to have
a look at more detailed material. If so, you may want to go through Michel
Juillard’s presentation on solving DSGE models to a first and second order
(available on Michel Juillard’s website), or read Collard and Juillard (2001a)
or Schmitt-Grohe and Uribe (2004) which gives a good overview of the most
recent solution techniques based on perturbation methods. Finally, note that
in this chapter we will focus on stochastic models - which is where the major
complication lies, as explained in section 3.1.1 of chapter 3. For more details
on the Newton-Raphson algorithm used in Dynare to solve deterministic mod-
els, see Juillard (1996).

7.2 What is the advantage of a second order
approximation?

As noted in chapter 3 and as will become clear in the section below, lin-
earizing a system of equations to the first order raises the issue of certainty
equivalence. This is because only the first moments of the shocks enter the
linearized equations, and when expectations are taken, they disappear. Thus,
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unconditional expectations of the endogenous variables are equal to their non-
stochastic steady state values.

This may be an acceptable simplification to make. But depending on the
context, it may instead be quite misleading. For instance, when using sec-
ond order welfare functions to compare policies, you also need second order
approximations of the policy function. Yet more clearly, in the case of asset
pricing models, linearizing to the second order enables you to take risk (or the
variance of shocks) into consideration - a highly desirable modeling feature. It
is therefore very convenient that Dynare allows you to choose between a first
or second order linearization of your model in the option of the stoch simul
command.

7.3 How does dynare solve stochastic DSGE
models?

In this section, we shall briefly overview the perturbation methods employed
by Dynare to solve DSGE models to a first order approximation. The sec-
ond order follows very much the same approach, although at a higher level
of complexity. The summary below is taken mainly from Michel Juillard’s
presentation “Computing first order approximations of DSGE models with
Dynare”, which you should read if interested in particular details, especially
regarding second order approximations (available on Michel Juillard’s web-
site).

To summarize, a DSGE model is a collection of first order and equilibrium
conditions that take the general form:

Et {f(yt+1, yt, yt−1, ut)} = 0

E(ut) = 0
E(utu

′
t) = Σu

and where:

y : vector of endogenous variables of any dimension

u : vector of exogenous stochastic shocks of any dimension

The solution to this system is a set of equations relating variables in the
current period to the past state of the system and current shocks, that satisfy
the original system. This is what we call the policy function. Sticking to the
above notation, we can write this function as:

yt = g(yt−1, ut)

http://jourdan.ens.fr/~michel/
http://jourdan.ens.fr/~michel/
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Then, it is straightforward to re-write yt+1 as

yt+1 = g(yt, ut+1)
= g(g(yt−1, ut), ut+1)

We can then define a new function F , such that:

F (yt−1, ut, ut+1) = f(g(g(yt−1, ut), ut+1), g(yt−1, ut), yt−1, ut)

which enables us to rewrite our system in terms of past variables, and current
and future shocks:

Et [F (yt−1, ut, ut+1)] = 0

We then venture to linearize this model around a steady state defined as:

f(ȳ, ȳ, ȳ, 0) = 0

having the property that:
ȳ = g(ȳ, 0)

The first order Taylor expansion around ȳ yields:

Et

{
F (1)(yt−1, ut, ut+1)

}
=

Et

[
f(ȳ, ȳ, ȳ) + fy+

(
gy (gyŷ + guu) + guu′

)

+fy0 (gyŷ + guu) + fy− ŷ + fuu
]

= 0

with ŷ = yt−1 − ȳ, u = ut, u′ = ut+1, fy+ = ∂f
∂yt+1

, fy0 = ∂f
∂yt

, fy− = ∂f
∂yt−1

,
fu = ∂f

∂ut
, gy = ∂g

∂yt−1
, gu = ∂g

∂ut
.

Taking expectations (we’re almost there!):

Et

{
F (1)(yt−1, ut, ut+1)

}
=

f(ȳ, ȳ, ȳ) + fy+ (gy (gyŷ + guu))

+fy0 (gyŷ + guu) + fy− ŷ + fuu
}

=
(
fy+gygy + fy0gy + fy−

)
ŷ +

(
fy+gygu + fy0gu + fu

)
u

= 0

As you can see, since future shocks only enter with their first moments
(which are zero in expectations), they drop out when taking expectations of
the linearized equations. This is technically why certainty equivalence holds
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in a system linearized to its first order. The second thing to note is that we
have two unknown variables in the above equation: gy and gu each of which
will help us recover the policy function g.

Since the above equation holds for any ŷ and any u, each parenthesis must
be null and we can solve each at a time. The first, yields a quadratic equation
in gy, which we can solve with a series of algebraic trics that are not all imme-
diately apparent (but detailed in Michel Juillard’s presentation). Incidentally,
one of the conditions that comes out of the solution of this equation is the
Blanchard-Kahn condition: there must be as many roots larger than one in
modulus as there are forward-looking variables in the model. Having recov-
ered gy, recovering gu is then straightforward from the second parenthesis.

Finally, notice that a first order linearization of the function g yields:

yt = ȳ + gyŷ + guu

And now that we have gy and gu, we have solved for the (approximate) policy
(or decision) function and have succeeded in solving our DSGE model. If we
were interested in impulse response functions, for instance, we would simply
iterate the policy function starting from an initial value given by the steady
state.

The second order solution uses the same “perturbation methods” as above
(the notion of starting from a function you can solve - like a steady state -
and iterating forward), yet applies more complex algebraic techniques to re-
cover the various partial derivatives of the policy function. But the general
approach is perfectly isomorphic. Note that in the case of a second order
approximation of a DSGE model, the variance of future shocks remains after
taking expectations of the linearized equations and therefore affects the level
of the resulting policy function.



Chapter 8

Estimating DSGE models -
Behind the scenes of Dynare

This chapter focuses on the theory of Bayesian estimation. It begins by mo-
tivating Bayesian estimation by suggesting some arguments in favor of it as
opposed to other forms of model estimation. It then attempts to shed some
light on what goes on in Dynare’s machinery when it estimates DSGE models.
To do so, this section surveys the methodologies adopted for Bayesian estima-
tion, including defining what are prior and posterior distributions, using the
Kalman filter to find the likelihood function, estimating the posterior function
thanks to the Metropolis-Hastings algorithm, and comparing models based on
posterior distributions.

8.1 Advantages of Bayesian estimation

Bayesian estimation is becoming increasingly popular in the field of macro-
economics. Recent papers have attracted significant attention; some of these
include: Schorfheide (2000) which uses Bayesian methods to compare the
fit of two competing DSGE models of consumption, Lubik and Schorfheide
(2003) which investigates whether central banks in small open economies re-
spond to exchange rate movements, Smets and Wouters (2003) which ap-
plies Bayesian estimation techniques to a model of the Eurozone, Ireland
(2004) which emphasizes instead maximum likelihood estimation, Fernandez-
Villaverde and Rubio-Ramirez (2004) which reviews the econometric proper-
ties of Bayesian estimators and compare estimation results with maximum
likelihood and BVAR methodologies, Lubik and Schorfheide (2005) which ap-
plies Bayesian estimation methods to an open macro model focussing on issues
of misspecification and identification, and finally Rabanal and Rubio-Ramirez
(2005) which compares the fit, based on posterior distributions, of four com-
peting specifications of New Keynesian monetary models with nominal rigidi-
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ties.

There are a multitude of advantages of using Bayesian methods to esti-
mate a model, but five of these stand out as particularly important and general
enough to mention here.

First, Bayesian estimation fits the complete, solved DSGE model, as op-
posed to GMM estimation which is based on particular equilibrium relation-
ships such as the Euler equation in consumption. Likewise, estimation in the
Bayesian case is based on the likelihood generated by the DSGE system, rather
than the more indirect discrepancy between the implied DSGE and VAR im-
pulse response functions. Of course, if your model is entirely mis-specified,
estimating it using Bayesian techniques could be a disadvantage.

Second, Bayesian techniques allow the consideration of priors which work
as weights in the estimation process so that the posterior distribution avoids
peaking at strange points where the likelihood peaks. Indeed, due to the
stylized and often misspecified nature of DSGE models, the likelihood often
peaks in regions of the parameter space that are contradictory with common
observations, leading to the “dilemma of absurd parameter estimates”.

Third, the inclusion of priors also helps identifying parameters. Unfortu-
nately, when estimating a model, the problem of identification often arises. It
can be summarized by different values of structural parameters leading to the
same joint distribution for observables. More technically, the problem arises
when the posterior distribution is flat over a subspace of parameter values.
But the weighting of the likelihood with prior densities often leads to adding
just enough curvature in the posterior distribution to facilitate numerical max-
imization.

Fourth, Bayesian estimation explicitly addresses model misspecification by
including shocks, which can be interpreted as observation errors, in the struc-
tural equations.

Sixth, Bayesian estimation naturally leads to the comparison of models
based on fit. Indeed, the posterior distribution corresponding to competing
models can easily be used to determine which model best fits the data. This
procedure, as other topics mentioned above, is discussed more technically in
the subsection below.
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8.2 The basic mechanics of Bayesian estimation

This and the following subsections are based in great part on work by, and
discussions with, Stéphane Adjemian, a member of the Dynare development
team. Some of this work, although summarized in presentation format, is
available in the “conferences and workshops” page of the Dynare website.
Other helpful material includes An and Schorfheide (2006), which includes a
clear and quite complete introduction to Bayesian estimation, illustrated by
the application of a simple DSGE model. Also, the appendix of Schorfheide
(2000) contains details as to the exact methodology and possible difficulties
encountered in Bayesian estimation. You may also want to take a glance at
Hamilton (1994), chapter 12, which provides a very clear, although somewhat
outdated, introduction to the basic mechanics of Bayesian estimation. Finally,
the websites of Frank Schorfheide and Jesus Fernandez-Villaverde contain a
wide variety of very helpful material, from example files to lecture notes to
related papers. Finally, remember to also check the open online examples of
the Dynare website for examples of .mod files touching on Bayesian estimation.

At its most basic level, Bayesian estimation is a bridge between calibra-
tion and maximum likelihood. The tradition of calibrating models is inherited
through the specification of priors. And the maximum likelihood approach en-
ters through the estimation process based on confronting the model with data.
Together, priors can be seen as weights on the likelihood function in order to
give more importance to certain areas of the parameter subspace. More tech-
nically, these two building blocks - priors and likelihood functions - are tied
together by Bayes’ rule. Let’s see how.

First, priors are described by a density function of the form

p(θA|A)

where A stands for a specific model, θA represents the parameters of model A,
p(•) stands for a probability density function (pdf) such as a normal, gamma,
shifted gamma, inverse gamma, beta, generalized beta, or uniform function.

Second, the likelihood function describes the density of the observed data,
given the model and its parameters:

L(θA|YT ,A) ≡ p(YT |θA,A)

where YT are the observations until period T , and where in our case the
likelihood is recursive and can be written as:

p(YT |θA,A) = p(y0|θA,A)
T∏

t=1

p(yt|Yt−1,θA,A)

http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_content&task=blogsection&id=16&Itemid=94
http://www.econ.upenn.edu/~schorf/
http://www.econ.upenn.edu/~jesusfv/index.html
http://www.cepremap.cnrs.fr/juillard/mambo/index.php?option=com_forum&Itemid=95&page=viewforum&f=2&sid=164275ffd060698c8150318e8d6b453e
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We now take a step back. Generally speaking, we have a prior density p(θ)
on the one hand, and on the other, a likelihood p(YT |θ). In the end, we are
interested in p(θ|YT ), the posterior density. Using the Bayes theorem
twice we obtain this density of parameters knowing the data. Generally, we
have

p(θ|YT ) =
p(θ;YT )
p(YT )

We also know that

p(YT |θ) =
p(θ;YT )

p(θ)
⇔ p(θ;YT ) = p(YT |θ)× p(θ)

By using these identities, we can combine the prior density and the
likelihood function discussed above to get the posterior density:

p(θA|YT ,A) =
p(YT |θA,A)p(θA|A)

p(YT |A)

where p(YT |A) is the marginal density of the data conditional on the model:

p(YT |A) =
∫

ΘA

p(θA;YT |A)dθA

Finally, the posterior kernel (or un-normalized posterior density, given
that the marginal density above is a constant or equal for any parameter),
corresponds to the numerator of the posterior density:

p(θA|YT ,A) ∝ p(YT |θA,A)p(θA|A) ≡ K(θA|YT ,A)

This is the fundamental equation that will allow us to rebuild all posterior mo-
ments of interest. The trick will be to estimate the likelihood function with
the help of the Kalman filter and then simulate the posterior kernel using
a sampling-like or Monte Carlo method such as the Metropolis-Hastings.
These topics are covered in more details below. Before moving on, though,
the subsection below gives a simple example based on the above reasoning
of what we mean when we say that Bayesian estimation is “somewhere in
between calibration and maximum likelihood estimation”. The example is
drawn from Zellner (1971), although other similar examples can be found in
Hamilton (1994), chapter 12.

8.2.1 Bayesian estimation: somewhere between calibration
and maximum likelihood estimation - an example

Suppose a data generating process yt = µ + εt for t = 1, ..., T , where εt ∼
N (0, 1) is gaussian white noise. Then, the likelihood is given by

p(YT |µ) = (2π)−
T
2 e−

1
2

PT
t=1(yt−µ)2
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We know from the above that µ̂ML,T = 1
T

∑T
t=1 yt ≡ y and that V[µ̂ML,T ] = 1

T .

In addition, let our prior be a gaussian distribution with expectation µ0

and variance σ2
µ. Then, the posterior density is defined, up to a constant, by:

p (µ|YT ) ∝ (2πσ2
µ)−

1
2 e

− 1
2

(µ−µ0)2

σ2
µ × (2π)−

T
2 e−

1
2

PT
t=1(yt−µ)2

Or equivalently, p (µ|YT ) ∝ e
− (µ−E[µ])2

V[µ] , with

V[µ] =
1

(
1
T

)−1 + σ−2
µ

and

E[µ] =
(

1
T

)−1
µ̂ML,T + σ−2

µ µ0
(

1
T

)−1 + σ−2
µ

From this, we can tell that the posterior mean is a convex combination of
the prior mean and the ML estimate. In particular, if σ2

µ → ∞ (ie, we have
no prior information, so we just estimate the model) then E[µ]→ µ̂ML,T , the
maximum likelihood estimator. But if σ2

µ → 0 (ie, we’re sure of ourselves and
we calibrate the parameter of interest, thus leaving no room for estimation)
then E[µ] → µ0, the prior mean. Most of the time, we’re somewhere in the
middle of these two extremes.

8.3 DSGE models and Bayesian estimation

8.3.1 Rewriting the solution to the DSGE model

Recall from chapter 7 that any DSGE model, which is really a collection of first
order and equilibrium conditions, can be written in the form Et {f(yt+1, yt, yt−1, ut)} =
0, taking as a solution equations of the type yt = g(yt−1, ut), which we call
the decision rule. In more appropriate terms for what follows, we can rewrite
the solution to a DSGE model as a system in the following manner:

y∗t = Mȳ(θ) + Mŷt + N(θ)xt + ηt

ŷt = gy(θ)ŷt−1 + gu(θ)ut

E(ηtη
′
t) = V (θ)

E(utu
′
t) = Q(θ)

where ŷt are variables in deviations from steady state, ȳ is the vector of steady
state values and θ the vector of deep (or structural) parameters to be esti-
mated. Other variables are described below.
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The second equation is the familiar decision rule mentioned above. But
the equation expresses a relationship among true endogenous variables that
are not directly observed. Only y∗t is observable, and it is related to the true
variables with an error ηt. Furthermore, it may have a trend, which is captured
with N(θ)xt to allow for the most general case in which the trend depends on
the deep parameters. The first and second equations above therefore naturally
make up a system of measurement and transition or state equations, respec-
tively, as is typical for a Kalman filter (you guessed it, it’s not a coincidence!).

8.3.2 Estimating the likelihood function of the DSGE model

The next logical step is to estimate the likelihood of the DSGE solution system
mentioned above. The first apparent problem, though, is that the equations
are non linear in the deep parameters. Yet, they are linear in the endogenous
and exogenous variables so that the likelihood may be evaluated with a linear
prediction error algorithm like the Kalman filter. This is exactly what Dynare
does. As a reminder, here’s what the Kalman filter recursion does.

For t = 1, . . . , T and with initial values y1 and P1 given, the recursion
follows

vt = y∗t − ȳ∗ −Mŷt −Nxt

Ft = MPtM
′ + V

Kt = gyPtg
′
yF

−1
t

ŷt+1 = gyŷt + Ktvt

Pt+1 = gyPt(gy −KtM)′ + guQg′u

For more details on the Kalman filter, see Hamilton (1994), chapter 13.

From the Kalman filter recursion, it is possible to derive the log-likelihood
given by

lnL (θ|Y∗
T ) = −Tk

2
ln(2π)− 1

2

T∑

t=1

|Ft|−
1
2
v′tF

−1
t vt

where the vector θ contains the parameters we have to estimate: θ, V (θ) and
Q(θ) and where Y ∗

T expresses the set of observable endogenous variables y∗t
found in the measurement equation.

The log-likelihood above gets us one step closer to our goal of finding the
posterior distribution of our parameters. Indeed, the log posterior kernel
can be expressed as

lnK(θ|Y∗
T ) = lnL (θ|Y∗

T ) + ln p(θ)
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where the first term on the right hand side is now known after carrying out the
Kalman filter recursion. The second, recall, are the priors, and are also known.

8.3.3 Finding the mode of the posterior distribution

Next, to find the mode of the posterior distribution - a key parameter and
an important output of Dynare - we simply maximize the above log posterior
kernel with respect to θ. This is done in Dynare using numerical methods.
Recall that the likelihood function is not Gaussian with respect to θ but to
functions of θ as they appear in the state equation. Thus, this maximization
problem is not completely straightforward, but fortunately doable with mod-
ern computers.

8.3.4 Estimating the posterior distribution

Finally, we are now in a position to find the posterior distribution of our
parameters. The distribution will be given by the kernel equation above,
but again, it is a nonlinear and complicated function of the deep parameters
θ. Thus, we cannot obtain an explicit form for it. We resort, instead, to
sampling-like methods, of which the Metropolis-Hastings has been retained in
the literature as particularly efficient. This is indeed the method adopted by
Dynare.

The general idea of the Metropolis-Hastings algorithm is to simulate the
posterior distribution. It is a “rejection sampling algorithm” used to generate
a sequence of samples (also known as a “Markov Chain” for reasons that will
become apparent later) from a distribution that is unknown at the outset.
Remember that all we have is the posterior mode; we are instead more often
interested in the mean and variance of the estimators of θ. To do so, the
algorithm builds on the fact that under general conditions the distribution
of the deep parameters will be asymptotically normal. The algorithm, in the
words of An and Shorfheide, “constructs a Gaussian approximation around
the posterior mode and uses a scaled version of the asymptotic covariance
matrix as the covariance matrix for the proposal distribution. This allows for
an efficient exploration of the posterior distribution at least in the neighbor-
hood of the mode” (An and Schorfheide (2006), p. 18). More precisely, the
Metropolis-Hastings algorithm implements the following steps:

1. Choose a starting point θ◦, where this is typically the posterior mode,
and run a loop over 2-3-4.

2. Draw a proposal θ∗ from a jumping distribution

J(θ∗|θt−1) = N (θt−1, cΣm)
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where Σm is the inverse of the Hessian computed at the posterior mode.

3. Compute the acceptance ratio

r =
p(θ∗|YT )

p(θt−1|YT )
=

K(θ∗|YT )
K(θt−1|YT )

4. Finally accept or discard the proposal θ∗ according to the following rule,
and update, if necessary, the jumping distribution:

θt =
{

θ∗ with probability min(r, 1)
θt−1 otherwise.

Figure 8.3.4 tries to clarify the above. In step 1, choose a candidate
paramter, θ∗ from a Normal distribution, whose mean has been set to θt−1

(this will become clear in just a moment). In step 2, compute the value of
the posterior kernel for that candidate parameter, and compare it to the value
of the kernel from the mean of the drawing distribution. In step 3, decide
whether or not to hold on to your candidate parameter. If the acceptance
ratio is greater than one, then definitely keep your candidate. Otherwise, go
back to the candidate of last period (this is true in very coarse terms, notice
that in fact you would keep your candidate only with a probability less than
one). Then, do two things. Update the mean of your drawing distribution,
and note the value of the parameter your retain. After having repeated these
steps often enough, in the final step, build a histogram of those retained val-
ues. Of course, the point is for each “bucket” of the histogram to shrink to
zero. This “smoothed histogram” will eventually be the posterior distribution
after sufficient iterations of the above steps.

But why have such a complicated acceptance rule? The point is to be able
to visit the entire domain of the posterior distribution. We should not be too
quick to simply throw out the candidate giving a lower value of the posterior
kernel, just in case using that candidate for the mean of the drawing distri-
bution allows us to to leave a local maximum and travel towards the global
maximum. Metaphorically, the idea is to allow the search to turn away from
taking a small step up, and instead take a few small steps down in the hope
of being able to take a big step up in the near future. Of course, an important
parameter in this searching procedure is the variance of the jumping distri-
bution and in particular the scale factor. If the scale factor is too small,
the acceptance rate (the fraction of candidate parameters that are accepted
in a window of time) will be too high and the Markov Chain of candidate
parameters will “mix slowly”, meaning that the distribution will take a long
time to converge to the posterior distribution since the chain is likely to get
“stuck” around a local maximum. On the other hand, if the scale factor is
too large, the acceptance rate will be very low (as the candidates are likely to
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Figure 8.1: The above sketches the Metropolis-Hastings algorithm, used to
build the posterior distribution function. Imagine repeating these steps a large
number of times, and smoothing the “histogram” such that each “bucket” has
infinitely small width.

land in regions of low probability density) and the chain will spend too much
time in the tails of the posterior distribution.

While these steps are mathematically clear, at least to a machine needing
to undertake the above calculations, several practical questions arise when
carrying out Bayesian estimation. These include: How should we choose the
scale factor c (variance of the jumping distribution)? What is a satisfactory
acceptance rate? How many draws are ideal? How is convergence of the
Metropolis-Hastings iterations assessed? These are all important questions
that will come up in your usage of Dynare. They are addressed as clearly as
possible in section 5.7 of Chapter 5.
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8.4 Comparing models using posterior
distributions

As mentioned earlier, while touting the advantages of Bayesian estimation,
the posterior distribution offers a particularly natural method of comparing
models. Let’s look at an illustration.

Suppose we have a prior distribution over two competing models: p(A)
and p(B). Using Bayes’ rule, we can compute the posterior distribution over
models, where I = A,B

p(I|YT ) =
p(I)p(YT |I)∑

I=A,B p(I)p(YT |I)

where this formula may easily be generalized to a collection of N models.
Then, the comparison of the two models is done very naturally through the

ratio of the posterior model distributions. We call this the posterior odds
ratio:

p(A|YT )
p(B|YT )

=
p(A)
p(B)

p(YT |A)
p(YT |B)

The only complication is finding the magrinal density of the data condi-
tional on the model, p(YT |I), which is also the denominator of the posterior
density p(θ|YT ) discussed earlier. This requires some detailed explanations
of their own.

For each model I = A,B we can evaluate, at least theoretically, the
marginal density of the data conditional on the model by integrating out
the deep parameters θI from the posterior kernel:

p(YT |I) =
∫

ΘI

p(θI ;YT |θI , I)dθI =
∫

ΘI

p(θI |I)× p(YT |θI , I)dθI

Note that the expression inside the integral sign is exactly the posterior kernel.
To remind you of this, you may want to glance back at the first subsection
above, specifying the basic mechanics of Bayesian estimation.

To obtain the marginal density of the data conditional on the model, there
are two options. The first is to assume a functional form of the posterior kernel
that we can integrate. The most straightforward and the best approximation,
especially for large samples, is the Gaussian (called a Laplace approxima-
tion). In this case, we would have the following estimator:

p̂(YT |I) = (2π)
k
2 |Σθm

I
|
1
2 p(θm

I |YT , I)p(θm
I |I)

where θm
I is the posterior mode. The advantage of this technique is its com-

putational efficiency: time consuming Metropolis-Hastings iterations are not
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necessary, only the numerically calculated posterior mode is required.

The second option is instead to use information from the Metropolis-
Hastings runs and is typically referred to as the Harmonic Mean Esti-
mator. The idea is to simulate the marginal density of interest and to simply
take an average of these simulated values. To start, note that

p(YT |I) = E
[

f(θI)
p(θI |I)p(YT |θI , I)

∣∣∣∣θI , I
]−1

where f is a probability density function, since

E
[

f(θI)
p(θI |I)p(YT |θI , I)

∣∣∣∣θI , I
]

=

∫
ΘI

f(θ)dθ
∫
ΘI

p(θI |I)p(YT |θI , I)dθI

and the numerator integrates out to one (seeGeweke (1999) for more details).

This suggests the following estimator of the marginal density

p̂(YT |I) =

[
1
B

B∑

b=1

f(θ(b)
I )

p(θ(b)
I |I)p(YT |θ(b)

I , I)

]−1

where each drawn vector θ(b)
I comes from the Metropolis-Hastings iterations

and where the probability density function f can be viewed as a weights on
the posterior kernel in order to downplay the importance of extreme values of
θ. Geweke (1999) suggests to use a truncated Gaussian function, leading to
what is typically referred to as the Modified Harmonic Mean Estimator.
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Chapter 10

Troubleshooting

To make sure this section is as user friendly as possible, the best is to compile
what users have to say! Please let me know what your most common problem
is with Dynare, how Dynare tells you about it and how you solve it. Thanks
for your precious help!
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