// --+ options: json=compute, transform_unary_ops, stochastic +-- var x1 x2 x1bar x2bar z ; varexo ex1 ex2 ex1bar ex2bar ez ; parameters a_x1_0 a_x1_1 a_x1_2 a_x1_x2_1 a_x1_x2_2 a_x2_0 a_x2_1 a_x2_2 a_x2_x1_1 a_x2_x1_2 e_c_m c_z_1 c_z_2 gamma beta ; a_x1_0 = -.9999; a_x1_1 = .4; a_x1_2 = 0;//.3; a_x1_x2_1 = .1; a_x1_x2_2 = 0;//.2; a_x2_0 = -.9; a_x2_1 = .2; a_x2_2 = 0;//-.1; a_x2_x1_1 = -.1; a_x2_x1_2 = 0;//.2; beta = .1; e_c_m = .1; c_z_1 = .07; c_z_2 = -.3; gamma = .7; trend_component_model(model_name=toto, eqtags=['eq:x1', 'eq:x2', 'eq:x1bar', 'eq:x2bar'], targets=['eq:x1bar', 'eq:x2bar']); pac_model(auxiliary_model_name=toto, discount=beta, model_name=pacman); model; [name='eq:x1'] diff(diff(log(x1))) = a_x1_0*(diff(log(x1(-1)))-x1bar(-1)) + a_x1_1*diff(diff(log(x1(-1)))) + a_x1_2*diff(diff(x1(-2))) + a_x1_x2_1*diff(log(x2(-1))) + a_x1_x2_2*diff(log(x2(-2))) + ex1; [name='eq:x2'] diff(log(x2)) = a_x2_0*(log(x2(-1))-x2bar(-1)) + a_x2_1*diff(diff(log(x1(-1)))) + a_x2_2*diff(diff(log(x1(-2)))) + a_x2_x1_1*diff(log(x2(-1))) + a_x2_x1_2*diff(log(x2(-2))) + ex2; [name='eq:x1bar'] x1bar = x1bar(-1) + ex1bar; [name='eq:x2bar'] x2bar = x2bar(-1) + ex2bar; [name='eq:pac'] diff(z) = gamma*(e_c_m*(log(x1(-1))-z(-1)) + c_z_1*diff(z(-1)) + c_z_2*diff(z(-2)) + pac_expectation(pacman)) + (1-gamma)*ez; end; shocks; var ex1 = 1; var ex2 = 1; var ex1bar = .1; var ex2bar = .11; var ez = 1; end; // Initialize the PAC model (build the Companion VAR representation for the auxiliary model). pac.initialize('pacman'); // Update the parameters of the PAC expectation model (h0 and h1 vectors). pac.update.expectation('pacman'); // Set initial conditions to zero for non logged variables, and one for logged variables init = .1*ones(10,M_.endo_nbr+M_.exo_nbr); initialconditions = dseries(init, 2000Q1, vertcat(M_.endo_names,M_.exo_names)); // Simulate the model for 500 periods TrueData = simul_backward_model(initialconditions, 10);