var y y_s R pie $\pi$ dq pie_s de A y_obs ${y^{obs}}$ pie_obs ${\pi^{obs}}$ R_obs ${R^{obs}}$; varexo e_R ${\varepsilon^R}$ e_q ${\varepsilon^q}$ e_ys ${\varepsilon^{ys}}$ e_pies ${\varepsilon^\pi}$ e_A ${\varepsilon^A}$; parameters psi1 ${\psi_1}$ psi2 ${\psi_2}$ psi3 ${\psi_3}$ rho_R ${\rho_R}$ tau ${\tau}$ alpha ${\alpha}$ rr k rho_q ${\rho_q}$ rho_A ${\rho_A}$ rho_ys ${\rho_{ys}}$ rho_pies ${\rho_\pi}$; psi1 = 1.54; psi2 = 0.25; psi3 = 0.25; rho_R = 0.5; alpha = 0.3; rr = 2.51; k = 0.5; tau = 0.5; rho_q = 0.4; rho_A = 0.2; rho_ys = 0.9; rho_pies = 0.7; model(linear); y = y(+1) - (tau +alpha*(2-alpha)*(1-tau))*(R-pie(+1))-alpha*(tau +alpha*(2-alpha)*(1-tau))*dq(+1) + alpha*(2-alpha)*((1-tau)/tau)*(y_s-y_s(+1))-A(+1); pie = exp(-rr/400)*pie(+1)+alpha*exp(-rr/400)*dq(+1)-alpha*dq+(k/(tau+alpha*(2-alpha)*(1-tau)))*y+k*alpha*(2-alpha)*(1-tau)/(tau*(tau+alpha*(2-alpha)*(1-tau)))*y_s; pie = de+(1-alpha)*dq+pie_s; R = rho_R*R(-1)+(1-rho_R)*(psi1*pie+psi2*(y+alpha*(2-alpha)*((1-tau)/tau)*y_s)+psi3*de)+e_R; dq = rho_q*dq(-1)+e_q; y_s = rho_ys*y_s(-1)+e_ys; pie_s = rho_pies*pie_s(-1)+e_pies; A = rho_A*A(-1)+e_A; y_obs = y-y(-1)+A; pie_obs = 4*pie; R_obs = 4*R; end; shocks; var e_R = 1.25^2; var e_q = 2.5^2; var e_A = 1.89; var e_ys = 1.89; var e_pies = 1.89; end; varobs y_obs R_obs pie_obs dq de; options_.TeX=1;